Home






SCHEME OF WORK
Chemistry
Form 3 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
THE MOLE
Concentration of a solution.
By the end of the lesson, the learner should be able to:
Define concentration of a solution.
Find concentration of a solution in grams/litre and moles/litre.
Q/A: - Equivalent ratios, e.g. 4g dissolved in 500cm? and
8g in 1 litre.
Worked examples on concentration of solutions.
chart
K.L.B. BK III
PP. 46-48

Longhorn Book III PP 76-81
1 2-3
THE MOLE
Molarity of a solution.
Preparation of molar solutions.
By the end of the lesson, the learner should be able to:
Define molarity of a solution.
Find molarity of a solution in M/dm?
Define molar solutions.
Prepare molar solutions.
Teacher explains that molarity of a solution is given in moles of the solute per litre.
Worked examples.
Supervised exercise.

Q/A: - Description of preparation of molar solutions.
student book
Volumetric flasks, teat droppers/wash bottle.
Sodium hydrogen pellets.
Weighing balance.
K.L.B. BK III
PP. 48-49

Longhorn
Book III
PP 76-81

K.L.B. BK III
PP. 50-51

Longhorn
Book III
PP 78-81
1 4
THE MOLE
Calculators on molar solutions.
By the end of the lesson, the learner should be able to:
Solve numerical calculations on molar solutions.
Problems on molar solutions.
Worked examples.
Supervised exercise.
Assignment.
student book
K.L.B. BK III
P 51
Longhorn Book III PP 76-81
1 5
THE MOLE
Dilution of solutions.
By the end of the lesson, the learner should be able to:
Calculate molarity of a solution after dilution.
Group experiments.
Calculations.
student book
K.L.B. BK III
PP. 76-81
2 1
THE MOLE
Stoichiometry of a chemical reaction.
By the end of the lesson, the learner should be able to:
To determine mole ratio of given reactions.
Group experiments: - Determine masses, hence moles of reacting CuSO4 solution and iron metal.
CuSO4 solution and iron metal.
K.L.B. BK III
P. 56
Longhorn Book III PP 87-92
2 2-3
THE MOLE
Stoichiometric equations.
Stoichiometric equations of various reactions.
By the end of the lesson, the learner should be able to:
To define a stoichiometric equation.
To investigate and determine Stoichiometric equations of various reactions.
To write stoichiometric equations of the above reactions.
Class experiments.

Problem solving.
student book
K.L.B. BK III
Longhorn Book III PP 14-16
PP. 88-93
K.L.B. BK III
P. 62
2 4
Volumetric Analysis.
Apparatus used in titration experiments.
By the end of the lesson, the learner should be able to:
To use and read a pipette and a burette.
Discussion and practical use of the apparatus.
Emphasis is laid on need to sterilize the apparatus after use.
Pipettes
Burettes.
K.L.B. BK III
PP. 63-64
Longhorn
Book III
PP 104-8
2 5
Volumetric Analysis.
Titration process.
By the end of the lesson, the learner should be able to:
To define titration as a process.
Define a titration end-point.
Review by Q/A: -
-Indicators and colour changes.
-Choice of indicators.
-Balanced chemical equations.
Discuss characteristics of a good titre, when an an-end point is attained.
Indicators
Suitable acid and base.
K.L.B.
BK III
PP. 64-67

Longhorn
Book III
PP 108-114
3 1
Volumetric Analysis.
Titration experiment (Neutralization reaction)
By the end of the lesson, the learner should be able to:
To carry out a titration experiment and obtain accurate results.
Class experiments: - To neutralize HCl with NaOH solution.
Fill in a table of results.
Find the average base used.
student book
K.L.B. BK III
P. 66

Longhorn Book III PP 108-114
3 2-3
Volumetric Analysis.
Titration experiment (Neutralization reaction)
Titration experiment (Neutralization reaction)
By the end of the lesson, the learner should be able to:
To carry out a titration experiment and obtain accurate results.
To carry out calculations from experimental results.
Class experiments: - To neutralize HCl with NaOH solution.
Fill in a table of results.
Find the average base used.

Step-by-step calculations.
student book
Calculators.
K.L.B. BK III
P. 66

Longhorn Book III PP 108-114

K.L.B. BK III
P 66
Longhorn Book III PP 108-114
3 4
Volumetric Analysis.
Basicity of an acid.
By the end of the lesson, the learner should be able to:
To define basicity of an acid.
Complete a table of number of replaceable hydrogen ions of an acid; hence define basicity of an acid.
Write corresponding ionic equations.
student book
K.L.B. BK III
P. 73
3 5
Volumetric Analysis.
Standardization of HCl.
By the end of the lesson, the learner should be able to:
To define standardization of HCl.
Class experiments.
Dilute HCl, Na2CO3 solutions.

K.L.B. BK III
PP. 74-75
4 1
Volumetric Analysis.
Concentration of HCl.
By the end of the lesson, the learner should be able to:
To calculate concentration of HCl from experimental results.
Calculations & supervised practice.
K.L.B. BK III
PP. 74-75
4 2-3
Volumetric Analysis.
Redox Titration Reactions.
By the end of the lesson, the learner should be able to:
To standardize a solution with an iron (II) salt.
Experiment and calculations.
Potassium Magnate
(VII)
K.L.B. BK III
PP. 74-75

Longhorn
Book III
PP 114-115
4 4
Volumetric Analysis.
Water of crystallization.
By the end of the lesson, the learner should be able to:
To determine amount of water of crystallization in ammonium iron sulphate crystals.
Teacher exposes the formula of water of crystallization.
Class experiment.
Filling in a table of results.
Ammonium
Iron (II)
Sulphate crystals.
Dilute sulphuric (VI) acid.
K.L.B. BK III
P. 76
4 5
Volumetric Analysis.
Formula mass of ammonium iron (II) sulphate.
By the end of the lesson, the learner should be able to:
To find formula mass of ammonium iron (II) sulphate.
Calculations from experimental results.
student book
K.L.B. BK III
PP. 76 -77
5 1
Volumetric Analysis.
Formula mass of a given salt.
By the end of the lesson, the learner should be able to:
To solve numerical problems involving water of crystallization.
Problem solving from sample results.
student book
K.L.B. BK III
P.77
5 2-3
Volumetric Analysis.
Atomicity of gases.
Mass and volume of gases.
By the end of the lesson, the learner should be able to:
To define atomicity of gases.
To determine mass and volume of gases.
Review by Q/A atoms and molecules; hence the definition.
Discuss a table of gases and their atomicity.

Teacher demonstration: - Determining mass of known volumes of oxygen / CO2.
student book
Lubricated syringes
Oxygen/
CO2.
K.L.B. BK III
PP. 78 -80
Longhorn BK III PP 126-128

K.L.B. BK III
P. 81
Longhorn BK III
PP 126-127
5 4
Volumetric Analysis.
Molar gas volume.
By the end of the lesson, the learner should be able to:
To define molar gas volume.
Use the above results to describe volume of one mole of a gas.
Discuss molar gas volume at R.T.P and S.T.P conditions.
student book
K.L.B. BK III
79 ? 80
Longhorn
Book III
PP 126-127
5 5
Volumetric Analysis.
Combining volumes of gases.
By the end of the lesson, the learner should be able to:
To compare combining volumes of two reacting gases.
Teacher demonstration: - Determining volumes of reacting gases; hence deduce volume rations.
student book
K.L.B BK III
P. 82
6 1
Volumetric Analysis.
Gay Lussac?s Law.
By the end of the lesson, the learner should be able to:
To state Gay Lussac?s Law.
To compare Gay Lussac?s Law with Avogadro?s Law.
To solve numericals using Gay Lussac?s Law.
Teacher exposes the law; and compares it with Gay Lussac?s Law.
Worked examples.
Supervised practice.
student book
K.L.B. BK III
P. 85

Longhorn
Book III
PP 129-131
6 2-3
Volumetric Analysis.
ORGANIC CHEMISTRY (I)
Gay Lussac?s Law.
Hydrocarbons.
Alkanes.
By the end of the lesson, the learner should be able to:
To state Gay Lussac?s Law.
To compare Gay Lussac?s Law with Avogadro?s Law.
To solve numericals using Gay Lussac?s Law.
To define organic Chemistry.
To define a hydrocarbon.
To identify groups of hydrocarbons.
To describe the carbon atom.
Teacher exposes the law; and compares it with Gay Lussac?s Law.
Worked examples.
Supervised practice.
Discuss composition of the carbon atom; hence deduce number of valence electrons.
Exposition of new terms.
student book
student book
Chart of biomass digester.
K.L.B. BK III
P. 85

Longhorn
Book III
PP 129-131

K.L.B. BK III
P. 92
Longhorn
Book III
P 135
6 4
ORGANIC CHEMISTRY (I)
Naming Alkanes.
By the end of the lesson, the learner should be able to:
To identify various alkanes.
To define a homologous series.
Discussion and exposition of new concepts.
student book
K.L.B. BK III
PP. 94-98
Longhorn
Book III
PP 136-139
6 5
ORGANIC CHEMISTRY (I)
Members of Alkane series.
By the end of the lesson, the learner should be able to:
To name members of alkane series and identify their characteristics.
To draw the structures of alkane series.
Discussion and exposition of new concepts.
Chart- structure of alkanes.
K.L.B. BK III
PP. 97-99

Longhorn Book III
PP 137-9
7 1
ORGANIC CHEMISTRY (I)
Isomerism in alkanes.
By the end of the lesson, the learner should be able to:
To draw and name isomers of simple hydrocarbons.
Discussion and exposition of new concepts.
Models.
K.L.B. BK III
PP. 101-102 Longhorn Book III
PP 141-2
7 2-3
ORGANIC CHEMISTRY (I)
Laboratory preparation of a given alkane.
Trend in physical properties of alkanes.
By the end of the lesson, the learner should be able to:
To describe laboratory preparation of a given alkane.
To state physical properties of the gases prepared.
To describe the trend in physical properties of alkanes.
Teacher demonstration.
Discussion.
Study a table of comparative properties of alkanes.
Make deductions from the table.
Sodium ethanoate, sodalime,
Pestle and mortar.
student book
K.L.B. BK III
P. 103

Longhorn
Book III
PP 146

K.L.B. BK III
P. 105

Longhorn
Book III
PP 148-9
7 4
ORGANIC CHEMISTRY (I)
Chemical properties of alkanes.
By the end of the lesson, the learner should be able to:
Describe chemical properties of alkanes.
Discussion
Examples of balanced equations.
student book
K.L.B. BK III
P. 107
Longhorn
Book III
PP 148-9
7 5
ORGANIC CHEMISTRY (I)
Substitution reactions involving alkanes. Uses of alkanes.
By the end of the lesson, the learner should be able to:
To describe substitution reactions involving alkanes.

To list down uses of alkanes.
Discussion


Teacher elucidates uses of alkanes.
student book
K.L.B. BK III
P. 108

Longhorn
Book III
PP 149-50
8 1
ORGANIC CHEMISTRY (I)
Alkenes. Molecular formulae of alkenes.
By the end of the lesson, the learner should be able to:
To write molecular formulae of alkenes.
Examine table of members of alkenes.
To identify members of alkene series.
student book
K.L.B. BK III
PP 153-4
8 2-3
ORGANIC CHEMISTRY (I)
Naming alkenes.
Alkene isomerism.
By the end of the lesson, the learner should be able to:
To name various alkenes.
Differentiate between branching and positional isomerism.
Q/Q: Nomenclature in alkenes.
Compare alkenes; hence deduce names of various alkenes.

Discussion and drawing of molecular structures.
student book
K.L.B. BK III
PP. 110-113
Longhorn
Book III
PP 154-6

K.L.B. BK III
P. 113
Longhorn
Book III
PP 158-60
8 4
ORGANIC CHEMISTRY (I)
Preparing ethene in the lab.
By the end of the lesson, the learner should be able to:
To describe lab preparation of ethene.
Teacher demonstration: - Carry out tests on ethene as students note down the observations in a table.
chart

K.L.B. BK III
P 162
8 5
ORGANIC CHEMISTRY (I)
Physical properties of ethene.
By the end of the lesson, the learner should be able to:
To describe physical properties of ethene and other alkenes.
To discuss physical properties of ethene and other alkenes.

student book
K.L.B. BK III
PP. 116-117
Longhorn Book III
PP 126-129
165-6
9

Mid term break

10 1
ORGANIC CHEMISTRY (I)
Chemical properties of ethene.
By the end of the lesson, the learner should be able to:
To explain halogenation and hydrogenation reactions.
Discussion and drawing structures.
charts

KLB BK III
PP. 118-119
Longhorn
Book III
PP 166-8
10 2-3
ORGANIC CHEMISTRY (I)
Alkenes and oxidizing agents.
Uses of alkenes & Topic review.
By the end of the lesson, the learner should be able to:
To describe reactions of alkenes with oxidizing agents.
To list down uses of alkenes.
Review the double bonds in alkenes.
Review reduction process, oxidizing agent.
Discuss reactions of alkenes with conc. H2SO4, acidified potassium chromate.
Expose hydrolysis process.


Teacher elucidates uses of alkenes.

Assignment.
charts

K.L.B. BK III
PP. 120-121


Longhorn
Book III
PP 166-8

K.L.B. BK III
P. 121 Longhorn Book
PP 170-1
10 4
ORGANIC CHEMISTRY (I)
Alkynes. Nomenclature.
By the end of the lesson, the learner should be able to:
To identify various alkynes.
To name and draw structures of alkynes.
Discuss a table of members of alkynes.
Review naming of alkanes and alkene and compare this with naming of alkynes.
charts
K.L.B. BK III
P. 122-123
Longhorn
Book III
PP 126-129 171-5
10 5
ORGANIC CHEMISTRY (I)
Alkynes. Nomenclature.
By the end of the lesson, the learner should be able to:
To identify various alkynes.
To name and draw structures of alkynes.
Discuss a table of members of alkynes.
Review naming of alkanes and alkene and compare this with naming of alkynes.
charts
K.L.B. BK III
P. 122-123
Longhorn
Book III
PP 126-129 171-5
11 1
ORGANIC CHEMISTRY (I)
Isomerism in alkynes.
Physical properties of ethyne.
By the end of the lesson, the learner should be able to:
To draw structure showing positional and branching isomerism.
Discussion and drawing structures.
charts
K.L.B. BK III
PP. 124-125
Longhorn
Book III
PP 176-8
11 2-3
ORGANIC CHEMISTRY (I)
Chemical properties of ethyne.
Tests for alkynes. Uses of alkynes.
By the end of the lesson, the learner should be able to:
To describe combustion, halogenation and hydrogenation processes.
To describe tests for alkynes and state uses of alkynes.
Discussion and writing of equations.
Discussion and explanations.

Assignment.
charts
K.L.B. BK III
PP. 127-129
Longhorn Book III
PP 180-184

K.L.B. BK III
P.130

Longhorn Book III
PP 180-84
11 4
SULPHUR AND ITS COMPOUNDS
Extraction of sulphur.
By the end of the lesson, the learner should be able to:

To describe extraction of sulphur by Frasch process.

Illustrate and discuss extraction of sulphur.
Chart-the Frasch process.
K.L.B. BK III
PP.180-181
Longhorn
Book III
PP 126-129
11 5
SULPHUR AND ITS COMPOUNDS
Allotropes of sulphur.
By the end of the lesson, the learner should be able to:
To identify allotropes of sulphur.
To describe preparation of allotropes of sulphur.
Discussion and exposition of new concepts.
video
K.L.B. BK III
PP. 182-183
Longhorn Book
PP 126-129
12 1
SULPHUR AND ITS COMPOUNDS
Physical properties of sulphur. Heating of sulphur.
By the end of the lesson, the learner should be able to:
To list physical properties of sulphur.

To describe effects of heat on sulphur.
Class experiment:
Solubility of sulphur in water, benzene, e.t.c,.
Class experiments:
Heating sulphur gently then strongly.
Discuss the observations.
charts
K.L.B. BK III
P.184
Longhorn I
Book III
PP 253-255
12 2-3
SULPHUR AND ITS COMPOUNDS
Chemical properties of sulphur.
By the end of the lesson, the learner should be able to:
To investigate and describe chemical properties of sulphur.
Group experiments.
Discuss observations.
Write corresponding equations.
charts
K.L.B.BK III
PP.188-190
Longhorn
Book III
PP 256-8
12 4
SULPHUR AND ITS COMPOUNDS
Uses of sulphur. Sulphur dioxide.
By the end of the lesson, the learner should be able to:
State uses of sulphur.
Describe lab. preparation of sulphur dioxide.
Teacher elucidates uses of sulphur.
Teacher demonstration:-
Preparation of sulphur dioxide in a fume chamber/in the open.
Carrying out tests on the gas.
charts
K.L.B.BK III
PP 191- 192
Longhorn Book
P 258
12 5
SULPHUR AND ITS COMPOUNDS
Physical properties of sulphur dioxide.
By the end of the lesson, the learner should be able to:
To list down physical properties of sulphur dioxide.
Discuss the above tests.
text book
K.L.B.BK III
PP 193
Longhorn
Book III
PP 262-3

Your Name Comes Here


Download

Feedback