Home






SCHEME OF WORK
Mathematics
Grade 9 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
1 1
MEASUREMENTS
Surface Area of Triangular and Rectangular-Based Prisms
By the end of the lesson, the learner should be able to:

-Draw a rectangular prism and identify its faces, edges, and vertices;
-Develop a net for a rectangular prism;
-Calculate the surface area of a rectangular prism using its net;
-Show interest in relating surface area to real-life applications.
In groups, learners are guided to:
-Collect objects that are rectangular prisms;
-Draw and sketch nets of rectangular prisms;
-Measure dimensions of the faces on the nets;
-Calculate the area of each face and add to find the total surface area;
-Discuss and share results with other groups.
How do we determine the surface area of a rectangular prism?
-Mathematics learners book grade 9 page 95;
-Manila paper for making nets;
-Scissors;
-Rulers;
-Objects with rectangular prism shapes (boxes);
-Glue.
-Observation of practical work; -Oral questions; -Written exercises; -Group work assessment.
1 2
MEASUREMENTS
Area of a Sector and Segment of a Circle
By the end of the lesson, the learner should be able to:

-Define a segment of a circle;
-Differentiate between a sector and a segment of a circle;
-Calculate the area of a segment of a circle;
-Show genuine interest in calculating areas of segments.
In groups, learners are guided to:
-Draw circles and form segments by drawing chords;
-Cut out segments from paper circles;
-Derive the formula for the area of a segment (sector area minus triangle area);
-Calculate the area of segments with different angles and chord lengths;
-Discuss and share results with other groups.
How do we calculate the area of a segment of a circle?
-Mathematics learners book grade 9 page 101;
-Circular paper cut-outs;
-Protractors;
-Scissors;
-Rulers;
-Scientific calculators.
-Observation of practical work; -Oral questions; -Written exercises; -Group work assessment.
1 3
MEASUREMENTS
Volume of Triangular and Rectangular-Based Prisms
By the end of the lesson, the learner should be able to:

-Identify triangular prisms;
-Calculate the volume of a triangular prism using the formula V = area of base × height;
-Solve problems involving volume of triangular prisms;
-Show interest in calculating volume of triangular prisms.
In groups, learners are guided to:
-Collect objects shaped like triangular prisms;
-Identify the base and height of triangular prisms;
-Calculate the area of the triangular base;
-Calculate the volume using the formula V = area of base × height;
-Discuss and share results with other groups.
How do we determine the volume of a triangular prism?
-Mathematics learners book grade 9 page 105;
-Triangular prism models;
-Rulers;
-Scientific calculators;
-Charts showing formulas for volume of triangular prisms.
-Mathematics learners book grade 9 page 107;
-Rectangular prism models (boxes);
-Charts showing formulas for volume of rectangular prisms.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
1 4
MEASUREMENTS
Volume of Triangular, Rectangular and Square-Based Pyramids
By the end of the lesson, the learner should be able to:

-Identify triangular-based pyramids;
-Calculate the volume of a triangular-based pyramid using the formula V = ⅓ × area of base × height;
-Solve problems involving volume of triangular-based pyramids;
-Show interest in calculating volumes of pyramids.
In groups, learners are guided to:
-Identify and discuss models of triangular-based pyramids;
-Identify the base and height of triangular-based pyramids;
-Calculate the area of the triangular base;
-Calculate the volume using the formula V = ⅓ × area of base × height;
-Discuss and share results with other groups.
How do we use the volume of solids in real-life situations?
-Mathematics learners book grade 9 page 108;
-Triangular-based pyramid models;
-Rulers;
-Scientific calculators;
-Charts showing formulas for volume of pyramids.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
1 5
MEASUREMENTS
Volume of Triangular, Rectangular and Square-Based Pyramids
By the end of the lesson, the learner should be able to:

-Identify rectangular and square-based pyramids;
-Calculate the volume of rectangular and square-based pyramids;
-Solve problems involving volume of rectangular and square-based pyramids;
-Appreciate the application of volume calculations in real-life.
In groups, learners are guided to:
-Identify and discuss models of rectangular and square-based pyramids;
-Identify the base and height of the pyramids;
-Calculate the area of the base (rectangle or square);
-Calculate the volume using the formula V = ⅓ × area of base × height;
-Discuss and share results with other groups.
How does the shape of the base affect the volume of a pyramid?
-Mathematics learners book grade 9 page 109;
-Rectangular and square-based pyramid models;
-Rulers;
-Scientific calculators;
-Charts showing formulas for volume of pyramids.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 1
MEASUREMENTS
Volume of a Cone in Real Life Situations
By the end of the lesson, the learner should be able to:

-Identify cones and their properties;
-Calculate the volume of a cone using the formula V = ⅓ × πr² × h;
-Solve problems involving volume of cones;
-Show interest in calculating volumes of cones.
In groups, learners are guided to:
-Identify and discuss models of cones;
-Identify the base radius and height of cones;
-Calculate the volume using the formula V = ⅓ × πr² × h;
-Solve practical problems involving volume of cones;
-Discuss and share results with other groups.
How do we determine the volume of a cone?
-Mathematics learners book grade 9 page 110;
-Cone models;
-Rulers;
-Scientific calculators;
-Charts showing formulas for volume of cones.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 2
MEASUREMENTS
Volume of a Sphere in Real Life Situations
By the end of the lesson, the learner should be able to:

-Identify spheres and their properties;
-Calculate the volume of a sphere using the formula V = ⅘ × πr³;
-Solve problems involving volume of spheres;
-Develop interest in calculating volumes of spheres.
In groups, learners are guided to:
-Identify and discuss models of spheres;
-Measure the radius of spherical objects;
-Calculate the volume using the formula V = ⅘ × πr³;
-Solve practical problems involving volume of spheres;
-Discuss and share results with other groups.
How do we determine the volume of a sphere?
-Mathematics learners book grade 9 page 112;
-Spherical objects (balls);
-Measuring tape/rulers;
-Scientific calculators;
-Charts showing formulas for volume of spheres.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 3
MEASUREMENTS
Volume of a Frustum in Real Life Situations
By the end of the lesson, the learner should be able to:

-Define a frustum;
-Identify frustums of cones and pyramids;
-Calculate the volume of a frustum;
-Show genuine interest in calculating volumes of frustums.
In groups, learners are guided to:
-Identify and discuss models of frustums;
-Understand how a frustum is formed by cutting a cone or pyramid;
-Learn the formula for volume of a frustum;
-Calculate the volume of different frustums;
-Discuss and share results with other groups.
What is a frustum and how is it formed?
-Mathematics learners book grade 9 page 113;
-Frustum models;
-Rulers;
-Scientific calculators;
-Charts showing formulas for volume of frustums.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 4
MEASUREMENTS
Volume of a Frustum in Real Life Situations
By the end of the lesson, the learner should be able to:

-Calculate the volume of a frustum of a cone;
-Calculate the volume of a frustum of a pyramid;
-Solve problems involving volume of frustums;
-Appreciate the application of volume of frustums in real-life situations.
In groups, learners are guided to:
-Review the formula for volume of a frustum;
-Calculate the volume of a frustum of a cone using the formula V = (1/3)πh(R² + Rr + r²);
-Calculate the volume of a frustum of a pyramid;
-Solve practical problems involving volume of frustums;
-Discuss and share results with other groups.
How do we calculate the volume of a frustum?
-Mathematics learners book grade 9 page 114;
-Frustum models;
-Rulers;
-Scientific calculators;
-Charts showing formulas for volume of frustums.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 5
MEASUREMENTS
Mass, Volume, Weight and Density - Instruments and Tools Used in Weighing
Mass, Volume, Weight and Density - Converting Units of Mass
By the end of the lesson, the learner should be able to:

-Identify different instruments and tools used in weighing;
-Describe the functions of various weighing instruments;
-Use weighing instruments correctly;
-Show interest in using weighing instruments.
In groups, learners are guided to:
-Identify and discuss different types of balances used for weighing;
-Identify commonly used balances in their locality;
-Discuss what different weighing instruments are used for;
-Practice using weighing instruments to measure mass of objects;
-Discuss and share findings with other groups.
How do you weigh materials and objects?
-Mathematics learners book grade 9 page 117;
-Different types of weighing instruments;
-Various objects to weigh;
-Charts showing different weighing instruments.
-Mathematics learners book grade 9 page 118;
-Weighing instruments;
-Charts showing relationship between different units of mass.
-Observation; -Oral questions; -Practical assessment; -Group presentations.
3 1
MEASUREMENTS
Mass, Volume, Weight and Density - Relating Mass and Weight
By the end of the lesson, the learner should be able to:

-Define mass and weight;
-Differentiate between mass and weight;
-Convert mass to weight using the formula W = mg;
-Show interest in understanding the relationship between mass and weight.
In groups, learners are guided to:
-Use digital devices to search for definitions of mass and weight;
-Discuss the SI units for mass and weight;
-Measure the mass of various objects;
-Calculate the weight of objects using the formula W = mg;
-Complete a table showing mass and weight of objects;
-Discuss and share findings with other groups.
What is the difference between mass and weight?
-Mathematics learners book grade 9 page 119;
-Weighing instruments;
-Spring balance;
-Various objects to weigh;
-Digital devices for research.
-Observation; -Oral questions; -Written exercises; -Group presentations.
3 2
MEASUREMENTS
Mass, Volume, Weight and Density - Determining Mass, Volume and Density
By the end of the lesson, the learner should be able to:

-Define density;
-Understand the relationship between mass, volume, and density;
-Calculate density using the formula D = m/V;
-Show genuine interest in determining density of various substances.
In groups, learners are guided to:
-Measure the mass of different objects;
-Determine the volume of objects using water displacement method;
-Calculate the density of objects using the formula D = m/V;
-Complete a table with mass, volume, and density of different objects;
-Discuss and share findings with other groups.
How do we determine the density of an object?
-Mathematics learners book grade 9 page 121;
-Weighing instruments;
-Measuring cylinders;
-Various objects (coins, stones, metal pieces);
-Water;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Practical assessment.
3 3
MEASUREMENTS
Mass, Volume, Weight and Density - Determining Density of Objects
By the end of the lesson, the learner should be able to:

-Calculate density given mass and volume;
-Apply the formula D = m/V to solve problems;
-Compare densities of different materials;
-Appreciate the concept of density in everyday life.
In groups, learners are guided to:
-Review the formula for density;
-Solve problems involving density with given mass and volume;
-Compare densities of different materials;
-Discuss real-life applications of density;
-Discuss and share results with other groups.
Why do some objects float and others sink in water?
-Mathematics learners book grade 9 page 122;
-Scientific calculators;
-Chart showing densities of common materials;
-Examples of applications of density in real life.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
3 4
MEASUREMENTS
Mass, Volume, Weight and Density - Determining Mass Given Volume and Density
By the end of the lesson, the learner should be able to:

-Rearrange the density formula to find mass;
-Calculate mass given volume and density using the formula m = D × V;
-Solve problems involving mass, volume, and density;
-Show interest in applying density concepts to find mass.
In groups, learners are guided to:
-Review the relationship between mass, volume, and density;
-Rearrange the formula D = m/V to find m = D × V;
-Calculate the mass of objects given their volume and density;
-Solve practical problems involving mass, volume, and density;
-Discuss and share results with other groups.
How can we determine the mass of an object if we know its volume and density?
-Mathematics learners book grade 9 page 123;
-Scientific calculators;
-Chart showing densities of common materials;
-Examples of applications of density in real life.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
3 5
MEASUREMENTS
Mass, Volume, Weight and Density - Determining Volume Given Mass and Density
By the end of the lesson, the learner should be able to:

-Rearrange the density formula to find volume;
-Calculate volume given mass and density using the formula V = m/D;
-Solve problems involving mass, volume, and density;
-Develop genuine interest in applying density concepts to find volume.
In groups, learners are guided to:
-Review the relationship between mass, volume, and density;
-Rearrange the formula D = m/V to find V = m/D;
-Calculate the volume of objects given their mass and density;
-Solve practical problems involving mass, volume, and density;
-Discuss and share results with other groups.
How can we determine the volume of an object if we know its mass and density?
-Mathematics learners book grade 9 page 123;
-Scientific calculators;
-Chart showing densities of common materials;
-Examples of applications of density in real life.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
4 1
MEASUREMENTS
Money - Converting Currency from One to Another in Real Life Situations
By the end of the lesson, the learner should be able to:

-Convert Kenyan currency to foreign currency;
-Use exchange rate tables to convert currencies;
-Solve problems involving currency conversion;
-Show interest in understanding international currency exchange.
In groups, learners are guided to:
-Review the concept of exchange rates;
-Understand that the selling rate is used when converting Kenyan Shillings to foreign currency;
-Convert Kenyan Shillings to various foreign currencies using the selling rate;
-Solve problems involving currency conversion;
-Discuss real-life situations where currency conversion is necessary;
-Discuss and share results with other groups.
How do exchange rates affect international trade?
-Mathematics learners book grade 9 page 142;
-Exchange rate tables from newspapers or online sources;
-Scientific calculators;
-Digital devices for checking current exchange rates;
-Charts showing examples of currency conversions.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
4 2
MEASUREMENTS
Money - Working Out Export Duties Charged on Goods
Money - Working Out Import Duties Charged on Goods
By the end of the lesson, the learner should be able to:

-Define export duty;
-Calculate export duty on goods;
-Understand the purpose of export duties;
-Appreciate the role of export duties in international trade.
In groups, learners are guided to:
-Use digital devices to search for the meaning of export duty;
-Research the percentage of export duty on different goods in Kenya;
-Calculate export duty on goods using the formula: Export Duty = Value of Goods × Duty Rate;
-Solve problems involving export duties;
-Discuss the purpose and impact of export duties;
-Discuss and share findings with other groups.
What are the types of taxes the government levy on its citizens?
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Scientific calculators;
-Charts showing export duty rates;
-Examples of export scenarios.
-Charts showing import duty rates;
-Examples of import scenarios.
-Observation; -Oral questions; -Written exercises; -Research presentation.
4 3
MEASUREMENTS
Money - Working Out Excise Duty Charged on Goods
By the end of the lesson, the learner should be able to:

-Define excise duty;
-Identify goods and services that attract excise duty;
-Calculate excise duty on goods and services;
-Show interest in understanding taxation systems.
In groups, learners are guided to:
-Use digital devices to search for the meaning of excise duty;
-Research goods that attract excise duty;
-Research percentage of excise duty on goods and services;
-Calculate excise duty on various goods and services;
-Solve problems involving excise duty;
-Discuss and share findings with other groups.
What is excise duty and how is it different from other taxes?
-Mathematics learners book grade 9 page 145;
-Digital devices for research;
-Scientific calculators;
-Charts showing excise duty rates;
-Examples of goods subject to excise duty.
-Observation; -Oral questions; -Written exercises; -Research presentation.
4 4
MEASUREMENTS
Money - Determining Value-Added Tax (VAT) Charged on Goods and Services
By the end of the lesson, the learner should be able to:

-Define Value Added Tax (VAT);
-Identify goods and services that attract VAT;
-Calculate VAT on goods and services;
-Appreciate the role of VAT in government revenue collection.
In groups, learners are guided to:
-Use digital devices or print media to search for information on VAT;
-Research goods that attract VAT;
-Research the percentage of VAT charged on goods and services;
-Study receipts to identify VAT amounts;
-Calculate VAT on various goods and services;
-Discuss and share findings with other groups.
How is VAT calculated and why is it charged?
-Mathematics learners book grade 9 page 145;
-Supermarket receipts showing VAT;
-Digital devices for research;
-Scientific calculators;
-Charts showing VAT calculations.
-Observation; -Oral questions; -Written exercises; -Analysis of receipts.
4 5
MEASUREMENTS
Approximations and Errors - Approximating Quantities in Measurements
By the end of the lesson, the learner should be able to:

-Approximate quantities using arbitrary units;
-Use strides, hand spans, and other body measurements to estimate lengths;
-Compare estimated values with actual measurements;
-Show interest in approximation techniques.
In groups, learners are guided to:
-Measure the lengths of their strides in centimeters;
-Measure the length of the classroom using strides;
-Estimate the length of the classroom in centimeters;
-Use hand spans to estimate lengths of various objects;
-Use thumb lengths to estimate smaller lengths;
-Discuss and share findings with other groups.
How do we estimate measurements of different quantities?
-Mathematics learners book grade 9 page 148;
-Measuring tapes/rulers;
-Various objects to measure;
-Charts showing conventional and arbitrary units;
-Open space for measuring with strides.
-Observation; -Oral questions; -Practical assessment; -Group presentations.
5 1
MEASUREMENTS
Approximations and Errors - Determining Errors Using Estimations and Actual Measurements
By the end of the lesson, the learner should be able to:

-Define error in measurements;
-Determine errors by comparing estimated and actual measurements;
-Calculate absolute errors in measurements;
-Develop genuine interest in understanding measurement errors.
In groups, learners are guided to:
-Estimate the measurements of various items in centimeters;
-Use a ruler to find the actual measurements of the items;
-Find the difference between the estimated and measured values;
-Understand that error = measured value - estimated value;
-Complete a table with estimated values, measured values, and errors;
-Discuss and share findings with other groups.
How do we determine errors in measurements?
-Mathematics learners book grade 9 page 149;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Practical assessment.
5 2
MEASUREMENTS
Approximations and Errors - Determining Percentage Errors Using Actual Measurements
By the end of the lesson, the learner should be able to:

-Define percentage error;
-Calculate percentage error in measurements;
-Interpret the meaning of percentage error;
-Show interest in minimizing errors in measurements.
In groups, learners are guided to:
-Review the concept of error in measurements;
-Express error as a ratio of the actual value;
-Convert the ratio to a percentage to find percentage error;
-Calculate percentage error using the formula: Percentage Error = (Error/Actual Value) × 100%;
-Solve problems involving percentage error;
-Discuss and share findings with other groups.
Why is percentage error more useful than absolute error?
-Mathematics learners book grade 9 page 151;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
5 3
Geometry
Coordinates and Graphs - Plotting points on a Cartesian plane
Coordinates and Graphs - Drawing a straight line graph
By the end of the lesson, the learner should be able to:

Plot out points on a Cartesian plane;
Work in groups to locate points on a plane;
Appreciate the use of Cartesian plane in locating positions.
Learners are guided to work in groups and locate the point of intersection of the x-coordinate and the y-coordinates on a Cartesian plane.
Learners plot given points such as P(3,4), Q(4,-2), R(-3,-5) and S(-1,5) on a Cartesian plane.
How do we locate a point on a Cartesian plane?
-KLB Mathematics Grade 9 Textbook page 154
-Graph paper
-Ruler
-Pencils
-Charts with Cartesian plane
-Colored markers
-KLB Mathematics Grade 9 Textbook page 155
-Calculator
-Blackboard illustration
-Oral questions -Observation -Written exercise -Peer assessment
5 4
Geometry
Coordinates and Graphs - Completing tables for linear equations
By the end of the lesson, the learner should be able to:

Complete tables of values for different linear equations;
Plot points from completed tables on a Cartesian plane;
Enjoy drawing straight line graphs from tables of values.
Learners complete tables of values for given linear equations such as y=2x+3.
Learners plot the points on a Cartesian plane and join them using a straight edge to form a straight line graph.
Learners work in pairs to generate their own tables of values for different equations.
How do we use tables of values to draw straight line graphs?
-KLB Mathematics Grade 9 Textbook page 156
-Graph paper
-Ruler
-Pencils
-Calculator
-Charts with prepared tables
-Oral questions -Peer assessment -Written exercise -Checklist
5 5
Geometry
Coordinates and Graphs - Drawing parallel lines
By the end of the lesson, the learner should be able to:

Generate tables of values for parallel line equations;
Draw parallel lines on the Cartesian plane;
Appreciate the relationship between parallel lines on a graph.
Learners generate tables of values for equations such as y=x-5 and y=x-3.
Learners use the tables of values to draw the lines on the Cartesian plane.
Learners measure the distance between the two lines at different positions using a set square and discuss their findings.
How can we tell if two lines are parallel by looking at their equations?
-KLB Mathematics Grade 9 Textbook page 157
-Graph paper
-Ruler
-Set square
-Calculator
-Charts showing parallel lines
-Oral questions -Group work -Written exercise -Observation
6 1
Geometry
Coordinates and Graphs - Relating gradients of parallel lines
By the end of the lesson, the learner should be able to:

Determine the gradients of straight lines;
Relate the gradients of parallel lines;
Value the importance of gradient in determining parallel lines.
Learners work in groups to generate tables of values for equations y=3x-4 and y=3x-1.
Learners draw the lines on the Cartesian plane and determine their gradients.
Learners compare the gradients and discuss the relationship between the gradients of parallel lines.
What is the relationship between the gradients of parallel lines?
-KLB Mathematics Grade 9 Textbook page 158
-Graph paper
-Ruler
-Calculator
-Manila paper
-Digital devices (optional)
-Oral questions -Group discussion -Written exercise -Assessment rubrics
6 2
Geometry
Coordinates and Graphs - Drawing perpendicular lines
By the end of the lesson, the learner should be able to:

Generate tables of values for perpendicular line equations;
Draw perpendicular lines on the Cartesian plane;
Enjoy identifying perpendicular lines from their equations.
Learners generate tables of values for equations such as y=2x+3 and y=-1/2x+4.
Learners draw the lines on the Cartesian plane and measure the angle at the point of intersection.
Learners discuss and share their findings with other groups.
How can you determine if two lines are perpendicular from their equations?
-KLB Mathematics Grade 9 Textbook page 159
-Graph paper
-Ruler
-Protractor
-Set square
-Calculator
-Charts showing perpendicular lines
-Oral questions -Observation -Written exercise -Checklist
6 3
Geometry
Coordinates and Graphs - Relating gradients of perpendicular lines
By the end of the lesson, the learner should be able to:

Determine gradients of perpendicular lines;
Find the relationship between gradients of perpendicular lines;
Appreciate the application of gradient in determining perpendicular lines.
Learners work in groups to generate tables of values for equations such as y=3x+2 and y=-1/3x+1.
Learners draw the lines on the Cartesian plane, determine their gradients, and find the product of the gradients.
Learners discuss the relationship between the gradients of perpendicular lines.
What is the product of the gradients of two perpendicular lines?
-KLB Mathematics Grade 9 Textbook page 160
-Graph paper
-Ruler
-Calculator
-Set square
-Charts with examples of perpendicular lines
-Oral questions -Group work -Written exercise -Assessment rubrics
6 4
Geometry
Coordinates and Graphs - Applications of straight line graphs
By the end of the lesson, the learner should be able to:

Apply graphs of straight lines to real-life situations;
Interpret information from straight line graphs;
Value the use of graphs in representing real-life situations.
Learners work in groups to generate tables of values for parking charges in two different towns.
Learners draw graphs to represent the information on the same Cartesian plane.
Learners find the gradient of the two lines drawn and determine whether they are parallel.
How can straight line graphs help us solve real-life problems?
-KLB Mathematics Grade 9 Textbook page 165
-Graph paper
-Ruler
-Calculator
-Charts showing real-life applications
-Manila paper for presentations
-Oral questions -Group discussion -Written exercise -Presentation
6 5
Geometry
Scale Drawing - Compass directions
Scale Drawing - Compass bearings
By the end of the lesson, the learner should be able to:

Identify compass and true bearings in real-life situations;
Draw and discuss the compass directions;
Appreciate the use of compass in navigation.
Learners carry out an activity outside the classroom where a member stands with hands spread out.
Learners draw a diagram showing the directions of the right hand, left hand, front, and back, labeling them in terms of North, South, East, and West.
Learners discuss situations where knowledge of compass direction is used.
How do we use compass directions to locate positions?
-KLB Mathematics Grade 9 Textbook page 168
-Magnetic compass
-Plain paper
-Colored pencils
-Charts showing compass directions
-Maps
-KLB Mathematics Grade 9 Textbook page 170
-Protractor
-Ruler
-Charts showing compass bearings
-Manila paper
-Oral questions -Practical activity -Written exercise -Observation
7 1
Geometry
Scale Drawing - True bearings
By the end of the lesson, the learner should be able to:

Identify true bearings in real-life situations;
Draw and measure true bearings;
Appreciate the difference between compass and true bearings.
Learners trace diagrams showing true bearings.
Learners measure angles from North in the clockwise direction.
Learners draw accurately true bearings such as 008°, 036°, 126°, etc.
What is the difference between compass bearings and true bearings?
-KLB Mathematics Grade 9 Textbook page 171
-Protractor
-Ruler
-Plain paper
-Charts showing true bearings
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Assessment rubrics
7 2
Geometry
Scale Drawing - Determining compass bearings
By the end of the lesson, the learner should be able to:

Determine the bearing of one point from another;
Measure angles to determine compass bearings;
Enjoy determining bearings in different situations.
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR.
Learners use the angle to write down the compass bearing of R from Q and discuss their results.
How do we determine the compass bearing of one point from another?
-KLB Mathematics Grade 9 Textbook page 173
-Protractor
-Ruler
-Plain paper
-Charts with bearing examples
-Manila paper for group work
-Oral questions -Group work -Written exercise -Observation
7 3
Geometry
Scale Drawing - Determining true bearings
By the end of the lesson, the learner should be able to:

Determine true bearings in different situations;
Measure angles to find true bearings;
Value the use of true bearings in navigation.
Learners consider a diagram showing points C and D.
Learners identify and determine the bearing of D from C by measurement.
Learners measure the bearing of various points in different diagrams.
How do we determine the true bearing of one point from another?
-KLB Mathematics Grade 9 Textbook page 175
-Protractor
-Ruler
-Plain paper
-Worksheets with diagrams
-Charts with bearing examples
-Oral questions -Practical activity -Written exercise -Checklist
7 4
Geometry
Scale Drawing - Locating points using compass bearing and distance
By the end of the lesson, the learner should be able to:

Locate a point using bearing and distance in real-life situations;
Create scale drawings showing relative positions;
Appreciate the use of scale drawings in real-life situations.
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U.
Learners display and discuss their constructions.
How do we use compass bearings and distances to locate positions?
-KLB Mathematics Grade 9 Textbook page 178
-Protractor
-Ruler
-Plain paper
-Drawing board
-Charts with examples
-Worksheets
-Oral questions -Practical activity -Written exercise -Peer assessment
7 5
Geometry
Scale Drawing - Locating points using true bearing and distance
By the end of the lesson, the learner should be able to:

Locate a point using true bearing and distance;
Create scale drawings showing relative positions;
Enjoy making scale drawings using bearings and distances.
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A.
Learners make scale drawings showing the relative positions of multiple points.
How do we use true bearings and distances to create scale drawings?
-KLB Mathematics Grade 9 Textbook page 182
-Protractor
-Ruler
-Plain paper
-Drawing board
-Manila paper for presentations
-Worksheets
-Oral questions -Practical activity -Written exercise -Observation
8 1
Geometry
Scale Drawing - Angle of elevation
By the end of the lesson, the learner should be able to:

Identify angles of elevation in real-life situations;
Make and use a clinometer to measure angles of elevation;
Appreciate the application of angles of elevation in real-life situations.
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects.
Learners make a clinometer and use it to measure angles of elevation of objects in the school environment.
What is an angle of elevation and how do we measure it?
-KLB Mathematics Grade 9 Textbook page 186
-Protractor
-String
-Weight (about 25g)
-Cardboard
-Straight piece of wood
-Charts showing angles of elevation
-Oral questions -Practical activity -Written exercise -Project assessment
8 2
Geometry
Scale Drawing - Determining angles of elevation
Scale Drawing - Angle of depression
By the end of the lesson, the learner should be able to:

Determine angles of elevation in different situations;
Use scale drawings to find angles of elevation;
Value the use of scale drawings in solving problems involving elevation.
Learners consider a flag pole AB that is 8 m high with point C on level ground 18 m from the foot of the pole.
Learners make a scale drawing showing A, B, and C using a scale of 1 cm represents 2 m.
Learners measure the angle between AC and CB and display their drawings.
How can we use scale drawings to determine angles of elevation?
-KLB Mathematics Grade 9 Textbook page 187
-Protractor
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts showing examples
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson)
-String
-Weight
-Charts showing angles of depression
-Diagrams
-Oral questions -Scale drawing -Written exercise -Presentation
8 3
Geometry
Scale Drawing - Determining angles of depression
By the end of the lesson, the learner should be able to:

Determine angles of depression in different situations;
Use scale drawings to find angles of depression;
Enjoy solving problems involving angles of depression.
Learners consider a stationary boat (B) that is 120 m away from the foot (F) of a cliff of height 80 m.
Learners make a scale drawing showing the positions of A, F, and B using a scale of 1 cm represents 20 m.
Learners measure the angle between the horizontal line passing through A and line AB to find the angle of depression.
How can we use scale drawings to determine angles of depression?
-KLB Mathematics Grade 9 Textbook page 192
-Protractor
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts with examples
-Oral questions -Scale drawing -Written exercise -Assessment rubrics
8 4
Geometry
Scale Drawing - Application in simple surveying
By the end of the lesson, the learner should be able to:

Apply scale drawing in simple surveying;
Record measurements in a field book;
Value the importance of surveying in mapping.
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island.
Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book.
How do surveyors use scale drawings to create maps?
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper
-Ruler
-Set square
-Pencil
-Field book (notebook)
-Charts with survey examples
-Oral questions -Practical activity -Written exercise -Field book assessment
8 5
Geometry
Scale Drawing - Survey using bearings and distances
By the end of the lesson, the learner should be able to:

Survey an area using bearings and distances;
Create scale drawings from bearing and distance data;
Appreciate the application of bearings in surveying.
Learners study a sketch of a piece of land with positions given in terms of bearings and distances from point A.
Learners mark point A and use the bearings and distances to locate other points.
Learners create scale drawings of areas described by bearings and distances from given tables.
How do surveyors use bearings and distances to map areas?
-KLB Mathematics Grade 9 Textbook page 199
-Protractor
-Ruler
-Plain paper
-Drawing board
-Field book
-Charts with examples
-Oral questions -Scale drawing -Written exercise -Presentation
9 1
Geometry
Scale Drawing - Complex surveying problems
By the end of the lesson, the learner should be able to:

Solve complex surveying problems involving bearings and distances;
Create scale drawings of multiple points and features;
Show interest in scale drawing applications in real-life.
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings.
Learners discuss real-life applications of scale drawing in surveying and navigation.
How do we determine unknown distances and bearings using scale drawing?
-KLB Mathematics Grade 9 Textbook page 202
-Protractor
-Ruler
-Drawing paper
-Calculator
-Maps
-Charts with examples
-Oral questions -Scale drawing -Written exercise -Assessment rubrics
9 2
Geometry
Scale Drawing - Project work on scale drawing
By the end of the lesson, the learner should be able to:

Apply scale drawing techniques to a real-life situation;
Create a scale map of the school compound or local area;
Appreciate the practical applications of scale drawing.
Learners work in groups to create a scale map of a part of the school compound.
Learners measure distances and determine bearings between key features.
Learners create a detailed scale drawing with a key showing the various features mapped.
How can we apply scale drawing techniques to map our environment?
-KLB Mathematics Grade 9 Textbook page 202
-Measuring tape
-Compass
-Drawing paper
-Colored pencils
-Manila paper
-Drawing instruments
-Project work -Group presentation -Peer assessment -Observation
9 3
Geometry
Similarity and Enlargement - Similar figures and properties
Similarity and Enlargement - Identifying similar objects
By the end of the lesson, the learner should be able to:

Identify similar figures and their properties;
Measure corresponding sides and angles of similar figures;
Appreciate the concept of similarity in real-life objects.
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them.
Learners measure all the corresponding angles and discover that they are equal.
What makes two figures similar?
-KLB Mathematics Grade 9 Textbook page 203
-Ruler
-Protractor
-Cut-out shapes
-Charts showing similar figures
-Manila paper
-KLB Mathematics Grade 9 Textbook page 204
-Various geometric objects
-Charts with examples
-Worksheets with diagrams
-Oral questions -Observation -Written exercise -Checklist
9 4
Geometry
Similarity and Enlargement - Drawing similar figures
By the end of the lesson, the learner should be able to:

Draw similar figures in different situations;
Calculate dimensions of similar figures using scale factors;
Enjoy creating similar figures.
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions.
Learners construct triangle PQR and compare results with other groups.
How do we construct a figure similar to a given figure?
-KLB Mathematics Grade 9 Textbook page 206
-Ruler
-Protractor
-Pair of compasses
-Drawing paper
-Calculator
-Charts with examples
-Oral questions -Practical activity -Written exercise -Assessment rubrics
9 5
Geometry
Similarity and Enlargement - Properties of enlargement
By the end of the lesson, the learner should be able to:

Determine properties of enlargement of different figures;
Locate the center of enlargement and find scale factors;
Value the application of enlargement in real-life situations.
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement).
Learners find the ratios of corresponding lengths to determine the scale factor.
How do we determine the center and scale factor of an enlargement?
-KLB Mathematics Grade 9 Textbook page 209
-Ruler
-Tracing paper
-Colored pencils
-Grid paper
-Charts showing enlargements
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Observation
10 1
Geometry
Similarity and Enlargement - Negative scale factors
By the end of the lesson, the learner should be able to:

Determine properties of enlargement with negative scale factors;
Locate centers of enlargement with negative scale factors;
Appreciate the concept of negative scale factors in enlargements.
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement.
Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object.
What happens when an enlargement has a negative scale factor?
-KLB Mathematics Grade 9 Textbook page 211
-Ruler
-Tracing paper
-Grid paper
-Colored pencils
-Charts showing negative scale factor enlargements
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Checklist
10 2
Geometry
Similarity and Enlargement - Drawing images of objects
By the end of the lesson, the learner should be able to:

Apply properties of enlargement to draw similar objects and their images;
Use scale factors to determine dimensions of images;
Enjoy creating enlarged images of objects.
Learners trace a given figure and join the center of enlargement to each vertex.
Learners multiply each distance by the scale factor to locate the image points.
Learners locate the image points and join them to create the enlarged figure.
How do we draw the image of an object under an enlargement with a given center and scale factor?
-KLB Mathematics Grade 9 Textbook page 214
-Ruler
-Grid paper
-Colored pencils
-Charts showing steps of enlargement
-Manila paper
-Oral questions -Practical activity -Written exercise -Peer assessment
10 3
Geometry
Similarity and Enlargement - Linear scale factor
By the end of the lesson, the learner should be able to:

Determine the linear scale factor of similar figures;
Calculate unknown dimensions using linear scale factors;
Value the application of linear scale factors in real-life problems.
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor.
Learners use the scale factor to find unknown dimensions of similar figures.
How do we use linear scale factors to calculate unknown dimensions of similar figures?
-KLB Mathematics Grade 9 Textbook page 216
-Ruler
-Calculator
-Similar objects of different sizes
-Charts with examples
-Worksheets
-Oral questions -Group work -Written exercise -Assessment rubrics
10 4
Geometry
Similarity and Enlargement - Using coordinates in enlargement
By the end of the lesson, the learner should be able to:

Find the coordinates of images under enlargement;
Determine the center of enlargement and scale factor from given coordinates;
Appreciate the use of coordinates in describing enlargements.
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points.
Learners calculate the scale factor using the coordinates of corresponding points.
How do we use coordinate geometry to describe and perform enlargements?
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper
-Ruler
-Colored pencils
-Calculator
-Charts with coordinate examples
-Oral questions -Practical activity -Written exercise -Observation
10 5
Geometry
Similarity and Enlargement - Applications of similarity
Trigonometry - Angles and sides of right-angled triangles
By the end of the lesson, the learner should be able to:

Apply similarity concepts to solve real-life problems;
Calculate heights and distances using similar triangles;
Value the practical applications of similarity in everyday life.
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering.
Learners work on practical applications of similarity in the environment.
How can we use similarity to solve real-life problems?
-KLB Mathematics Grade 9 Textbook page 219
-Ruler
-Calculator
-Drawing paper
-Charts with real-life applications
-Manila paper for presentations
-KLB Mathematics Grade 9 Textbook page 220
-Protractor
-Set square
-Charts with labeled triangles
-Colored markers
-Oral questions -Problem-solving -Written exercise -Group presentation
11 1
Geometry
Trigonometry - Sine ratio
By the end of the lesson, the learner should be able to:

Identify sine ratio from a right-angled triangle;
Calculate sine of angles in right-angled triangles;
Value the use of sine ratio in solving problems.
Learners draw triangles with specific angles and sides.
Learners draw perpendiculars from points on one side to another and measure their lengths.
Learners calculate ratios of opposite side to hypotenuse for different angles and discover the sine ratio.
What is the sine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 222
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing sine ratio
-Manila paper
-Oral questions -Practical activity -Written exercise -Assessment rubrics
11 2
Geometry
Trigonometry - Cosine ratio
By the end of the lesson, the learner should be able to:

Identify cosine ratio from a right-angled triangle;
Calculate cosine of angles in right-angled triangles;
Enjoy solving problems involving cosine ratio.
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio.
Learners find the cosine of marked angles in various right-angled triangles.
What is the cosine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 223
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing cosine ratio
-Worksheets
-Oral questions -Practical activity -Written exercise -Observation
11 3
Geometry
Trigonometry - Tangent ratio
By the end of the lesson, the learner should be able to:

Identify tangent ratio from a right-angled triangle;
Calculate tangent of angles in right-angled triangles;
Appreciate the importance of tangent ratio in problem-solving.
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths.
Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio.
What is the tangent of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 225
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing tangent ratio
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
11 4
Geometry
Trigonometry - Reading tables of sines
By the end of the lesson, the learner should be able to:

Read tables of trigonometric ratios of acute angles;
Find the sine values of different angles using tables;
Value the importance of mathematical tables in finding trigonometric ratios.
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values.
Learners find sine values of angles with decimal parts using the 'ADD' column in the tables.
How do we use mathematical tables to find the sine of an angle?
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-Oral questions -Practical activity -Written exercise -Assessment rubrics
11 5
Geometry
Trigonometry - Reading tables of cosines and tangents
By the end of the lesson, the learner should be able to:

Read tables of cosines and tangents for acute angles;
Find cosine and tangent values using mathematical tables;
Enjoy using mathematical tables to find trigonometric ratios.
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles.
Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents.
How do we use mathematical tables to find cosine and tangent values?
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-Oral questions -Practical activity -Written exercise -Observation
12 1
Geometry
Trigonometry - Using calculators for trigonometric ratios
By the end of the lesson, the learner should be able to:

Determine trigonometric ratios of acute angles using calculators;
Compare values obtained from tables and calculators;
Value the use of calculators in finding trigonometric ratios.
Learners use calculators to find trigonometric ratios of specific angles.
Learners compare values obtained from calculators with those from mathematical tables.
Learners use calculators to find sine, cosine, and tangent of various angles.
How do we use calculators to find trigonometric ratios?
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators
-Mathematical tables
-Worksheets
-Chart showing calculator keys
-Sample exercises
-Oral questions -Practical activity -Written exercise -Checklist
12 2
Geometry
Trigonometry - Calculating lengths using trigonometric ratios
Trigonometry - Calculating angles using trigonometric ratios
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to calculate lengths of right-angled triangles;
Use sine, cosine, and tangent ratios to find unknown sides;
Appreciate the application of trigonometry in solving real-life problems.
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side.
Learners solve problems involving finding sides of right-angled triangles.
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 235
-Oral questions -Group work -Written exercise -Assessment rubrics
12 3
Geometry
Trigonometry - Application in heights and distances
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to solve problems involving heights and distances;
Calculate heights of objects using angles of elevation;
Value the use of trigonometry in real-life situations.
Learners solve problems involving finding heights of objects like flag poles, towers, and buildings using angles of elevation.
Learners apply sine, cosine, and tangent ratios as appropriate to calculate unknown heights and distances.
Learners discuss real-life applications of trigonometry in architecture, navigation, and engineering.
How do we use trigonometry to find heights and distances in real-life situations?
-KLB Mathematics Grade 9 Textbook page 237
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with real-life examples
-Manila paper
-Oral questions -Problem-solving -Written exercise -Group presentation
12 4
Geometry
Trigonometry - Application in navigation
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios in navigation problems;
Calculate distances and bearings using trigonometry;
Appreciate the importance of trigonometry in navigation.
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios.
Learners discuss how pilots, sailors, and navigators use trigonometry.
How is trigonometry used in navigation and determining positions?
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Maps
-Charts with navigation examples
-Oral questions -Problem-solving -Written exercise -Assessment rubrics
12 5
Geometry
Trigonometry - Review and mixed applications
By the end of the lesson, the learner should be able to:

Apply trigonometric concepts in mixed application problems;
Solve problems involving both scale drawing and trigonometry;
Value the integration of different geometric concepts in problem-solving.
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems.
Learners discuss how different geometric concepts interconnect in solving real-world problems.
How can we integrate different geometric concepts to solve complex problems?
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Drawing paper
-Past examination questions
-Oral questions -Problem-solving -Written exercise -Assessment test

Your Name Comes Here


Download

Feedback