Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1-2

OPENING SCHOOL AND OPENER EXAM

2 2
Trigonometry (II)
The unit circle
By the end of the lesson, the learner should be able to:
Draw the unit circle
Identify coordinates on the unit circle
Understand the unit circle concept
Q/A on basic circle properties
Discussions on unit circle construction
Solving problems using unit circle
Demonstrations of circle drawing
Explaining unit circle applications
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 41-42
2 3
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Calculate trigonometric ratios for obtuse angles
Apply reference angle concepts
Q/A on basic trigonometric ratios
Discussions on angle extensions
Solving obtuse angle problems
Demonstrations of reference angles
Explaining quadrant relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 44-45
2 4
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Solve problems with angles in different quadrants
Apply ASTC rule for sign determination
Q/A on quadrant properties
Discussions on sign conventions
Solving multi-quadrant problems
Demonstrations of ASTC rule
Explaining trigonometric signs
Calculators, quadrant charts
KLB Mathematics Book Three Pg 46-47
2 5
Trigonometry (II)
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360°
By the end of the lesson, the learner should be able to:
Find the trigonometric values of negative angles
Apply negative angle identities
Solve problems involving negative angles
Q/A on negative angle concepts
Discussions on angle direction
Solving negative angle problems
Demonstrations of identity applications
Explaining clockwise rotations
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 48-49
2 6
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find sine and cosine
Read trigonometric tables accurately
Apply table interpolation methods
Q/A on table reading skills
Discussions on table structure
Solving problems using tables
Demonstrations of interpolation
Explaining table accuracy
Mathematical tables, calculators
KLB Mathematics Book Three Pg 51-55
2 7
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find tan
Apply tables for all trigonometric functions
Compare table and calculator results
Q/A on tangent table usage
Discussions on function relationships
Solving comprehensive table problems
Demonstrations of result verification
Explaining table limitations
Mathematical tables, calculators
KLB Mathematics Book Three Pg 55-56
3 1
Trigonometry (II)
Use of calculators
Radian measure
By the end of the lesson, the learner should be able to:
Use calculators to find sine, cosine and tan
Apply calculator functions for trigonometry
Verify calculator accuracy
Q/A on calculator trigonometric functions
Discussions on calculator modes
Solving problems using calculators
Demonstrations of function keys
Explaining degree vs radian modes
Calculators, function guides
Calculators, conversion charts
KLB Mathematics Book Three Pg 56-58
3 2
Trigonometry (II)
Simple trigonometric graphs
By the end of the lesson, the learner should be able to:
Draw tables for sine of values
Plot graphs of sine functions
Identify sine graph properties
Q/A on coordinate graphing
Discussions on periodic functions
Solving graphing problems
Demonstrations of sine plotting
Explaining graph characteristics
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 62-63
3 3
Trigonometry (II)
Graphs of cosines
Graphs of tan
By the end of the lesson, the learner should be able to:
Draw tables for cosine of values
Plot graphs of cosine functions
Compare sine and cosine graphs
Q/A on cosine properties
Discussions on graph relationships
Solving cosine graphing problems
Demonstrations of cosine plotting
Explaining phase relationships
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 63-64
3 4
Trigonometry (II)
The sine rule
By the end of the lesson, the learner should be able to:
State the sine rule
Apply sine rule to find solution of triangles
Solve triangles using sine rule
Q/A on triangle properties
Discussions on sine rule applications
Solving triangle problems
Demonstrations of rule application
Explaining ambiguous case
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 65-70
3 5
Trigonometry (II)
Cosine rule
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 71-75
3 6
Trigonometry (II)
Circles: Chords and Tangents
Problem solving
Length of an arc
By the end of the lesson, the learner should be able to:
Solve problems on cosines, sines and tan
Apply trigonometry to real-world situations
Integrate all trigonometric concepts
Q/A on chapter consolidation
Discussions on practical applications
Solving comprehensive problems
Demonstrations of problem-solving strategies
Explaining real-world trigonometry
Calculators, comprehensive problem sets, real-world examples
Geometrical set, calculators
KLB Mathematics Book Three Pg 76-77
3 7
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Solve complex arc length problems
Apply arc concepts to real situations
Q/A on advanced arc applications
Discussions on practical arc measurements
Solving complex arc problems
Demonstrations of real-world applications
Explaining engineering and design uses
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
4 1
Circles: Chords and Tangents
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
4 2
Circles: Chords and Tangents
Parallel chords
Equal chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
4 3
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Apply intersecting chord theorem
Understand chord intersection properties
Q/A on chord intersection concepts
Discussions on intersection theorem
Solving basic intersection problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 132-135
4 4
Circles: Chords and Tangents
Intersecting chords
Chord properties
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
4 5
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
4 6
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
4 7
Circles: Chords and Tangents
Properties of tangents to a circle from an external point
Tangent properties
By the end of the lesson, the learner should be able to:
State the properties of tangents to a circle from an external point
Apply external tangent properties
Solve external tangent problems
Q/A on external tangent concepts
Discussions on tangent properties
Solving external tangent problems
Demonstrations of property applications
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 142-144
5 1
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
5 2
Circles: Chords and Tangents
Tangents to two circles
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
5 3
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
5 4
Circles: Chords and Tangents
Circle contact
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
5 5
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
5 6
Circles: Chords and Tangents
Circumscribed circle
By the end of the lesson, the learner should be able to:
Construct circumscribed circles
Find circumscribed circle properties
Apply circumscription concepts
Q/A on circumscription concepts
Discussions on circumscribed circle construction
Solving circumscription problems
Demonstrations of construction techniques
Explaining circumscription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165
5 7
Circles: Chords and Tangents
Escribed circles
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
6 1
Circles: Chords and Tangents
Centroid
Orthocenter
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
6 2
Circles: Chords and Tangents
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 164-167
6 3
Vectors (II)
Proportional division of a line
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 237-238
6 4
Vectors (II)
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 239
6 5
Vectors (II)
Ratio theorem
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 240-242
6 6
Vectors (II)
Advanced ratio theorem applications
Mid-point
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 242
6 7
Vectors (II)
Ratio theorem and midpoint integration
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
KLB Mathematics Book Three Pg 244-245
7 1
Vectors (II)
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply ratio theorem to challenging problems
Handle complex geometric applications
Demonstrate comprehensive ratio mastery
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships
Solving advanced ratio problems using systematic methods
Demonstrations using sophisticated geometric constructions
Explaining mastery using challenging applications
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 246-248
7 2
Vectors (II)
Applications of vectors in geometry
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-249
7 3
Vectors (II)
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250
7-9

END TERM EXAM AND CLOSING SCHOOL 🏫


Your Name Comes Here


Download

Feedback