If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1-2 |
OPENING SCHOOL AND OPENER EXAM |
|||||||
2 | 2 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Draw the unit circle Identify coordinates on the unit circle Understand the unit circle concept |
Q/A on basic circle properties
Discussions on unit circle construction Solving problems using unit circle Demonstrations of circle drawing Explaining unit circle applications |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 41-42
|
|
2 | 3 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Calculate trigonometric ratios for obtuse angles Apply reference angle concepts |
Q/A on basic trigonometric ratios
Discussions on angle extensions Solving obtuse angle problems Demonstrations of reference angles Explaining quadrant relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 44-45
|
|
2 | 4 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Solve problems with angles in different quadrants Apply ASTC rule for sign determination |
Q/A on quadrant properties
Discussions on sign conventions Solving multi-quadrant problems Demonstrations of ASTC rule Explaining trigonometric signs |
Calculators, quadrant charts
|
KLB Mathematics Book Three Pg 46-47
|
|
2 | 5 |
Trigonometry (II)
|
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360° |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of negative angles Apply negative angle identities Solve problems involving negative angles |
Q/A on negative angle concepts
Discussions on angle direction Solving negative angle problems Demonstrations of identity applications Explaining clockwise rotations |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 48-49
|
|
2 | 6 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find sine and cosine Read trigonometric tables accurately Apply table interpolation methods |
Q/A on table reading skills
Discussions on table structure Solving problems using tables Demonstrations of interpolation Explaining table accuracy |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 51-55
|
|
2 | 7 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find tan Apply tables for all trigonometric functions Compare table and calculator results |
Q/A on tangent table usage
Discussions on function relationships Solving comprehensive table problems Demonstrations of result verification Explaining table limitations |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 55-56
|
|
3 | 1 |
Trigonometry (II)
|
Use of calculators
Radian measure |
By the end of the
lesson, the learner
should be able to:
Use calculators to find sine, cosine and tan Apply calculator functions for trigonometry Verify calculator accuracy |
Q/A on calculator trigonometric functions
Discussions on calculator modes Solving problems using calculators Demonstrations of function keys Explaining degree vs radian modes |
Calculators, function guides
Calculators, conversion charts |
KLB Mathematics Book Three Pg 56-58
|
|
3 | 2 |
Trigonometry (II)
|
Simple trigonometric graphs
|
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
3 | 3 |
Trigonometry (II)
|
Graphs of cosines
Graphs of tan |
By the end of the
lesson, the learner
should be able to:
Draw tables for cosine of values Plot graphs of cosine functions Compare sine and cosine graphs |
Q/A on cosine properties
Discussions on graph relationships Solving cosine graphing problems Demonstrations of cosine plotting Explaining phase relationships |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 63-64
|
|
3 | 4 |
Trigonometry (II)
|
The sine rule
|
By the end of the
lesson, the learner
should be able to:
State the sine rule Apply sine rule to find solution of triangles Solve triangles using sine rule |
Q/A on triangle properties
Discussions on sine rule applications Solving triangle problems Demonstrations of rule application Explaining ambiguous case |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 65-70
|
|
3 | 5 |
Trigonometry (II)
|
Cosine rule
|
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 71-75
|
|
3 | 6 |
Trigonometry (II)
Circles: Chords and Tangents |
Problem solving
Length of an arc |
By the end of the
lesson, the learner
should be able to:
Solve problems on cosines, sines and tan Apply trigonometry to real-world situations Integrate all trigonometric concepts |
Q/A on chapter consolidation
Discussions on practical applications Solving comprehensive problems Demonstrations of problem-solving strategies Explaining real-world trigonometry |
Calculators, comprehensive problem sets, real-world examples
Geometrical set, calculators |
KLB Mathematics Book Three Pg 76-77
|
|
3 | 7 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
4 | 1 |
Circles: Chords and Tangents
|
Chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
4 | 2 |
Circles: Chords and Tangents
|
Parallel chords
Equal chords |
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
4 | 3 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Apply intersecting chord theorem Understand chord intersection properties |
Q/A on chord intersection concepts
Discussions on intersection theorem Solving basic intersection problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 132-135
|
|
4 | 4 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
4 | 5 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
4 | 6 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
4 | 7 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
Tangent properties |
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
5 | 1 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
5 | 2 |
Circles: Chords and Tangents
|
Tangents to two circles
Contact of circles |
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of transverse common tangents Find transverse tangent properties Compare direct and transverse tangents |
Q/A on transverse tangent concepts
Discussions on tangent type differences Solving transverse tangent problems Demonstrations of comparison methods Explaining tangent classifications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 150-151
|
|
5 | 3 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand external contact properties Compare internal and external contact |
Q/A on external contact concepts
Discussions on contact type differences Solving external contact problems Demonstrations of contact analysis Explaining contact applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 153-154
|
|
5 | 4 |
Circles: Chords and Tangents
|
Circle contact
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving chords, tangents and contact circles Integrate all contact concepts Apply comprehensive contact knowledge |
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving Solving complex contact problems Demonstrations of systematic approaches Explaining complete contact mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 154-157
|
|
5 | 5 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
5 | 6 |
Circles: Chords and Tangents
|
Circumscribed circle
|
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
5 | 7 |
Circles: Chords and Tangents
|
Escribed circles
|
By the end of the
lesson, the learner
should be able to:
Construct escribed circles Find escribed circle properties Apply escription concepts |
Q/A on escription concepts
Discussions on escribed circle construction Solving escription problems Demonstrations of construction methods Explaining escription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165-166
|
|
6 | 1 |
Circles: Chords and Tangents
|
Centroid
Orthocenter |
By the end of the
lesson, the learner
should be able to:
Construct centroid Find centroid properties Apply centroid concepts |
Q/A on centroid definition and properties
Discussions on centroid construction Solving centroid problems Demonstrations of construction techniques Explaining centroid applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 166
|
|
6 | 2 |
Circles: Chords and Tangents
|
Circle and triangle relationships
|
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 164-167
|
|
6 | 3 |
Vectors (II)
|
Proportional division of a line
External division of a line |
By the end of the
lesson, the learner
should be able to:
Divide a line internally in the given ratio Apply the internal division formula Calculate division points using vector methods Understand proportional division concepts |
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods Solving internal division problems using organized approaches Demonstrations using internal point construction examples Explaining internal division using geometric visualization |
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books |
KLB Mathematics Book Three Pg 237-238
|
|
6 | 4 |
Vectors (II)
|
Combined internal and external division
|
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
|
KLB Mathematics Book Three Pg 239
|
|
6 | 5 |
Vectors (II)
|
Ratio theorem
|
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
|
KLB Mathematics Book Three Pg 240-242
|
|
6 | 6 |
Vectors (II)
|
Advanced ratio theorem applications
Mid-point |
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books |
KLB Mathematics Book Three Pg 242
|
|
6 | 7 |
Vectors (II)
|
Ratio theorem and midpoint integration
|
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
|
KLB Mathematics Book Three Pg 244-245
|
|
7 | 1 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
|
KLB Mathematics Book Three Pg 246-248
|
|
7 | 2 |
Vectors (II)
|
Applications of vectors in geometry
Rectangle diagonal applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books |
KLB Mathematics Book Three Pg 248-249
|
|
7 | 3 |
Vectors (II)
|
Advanced geometric applications
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, advanced geometric models, exercise books
|
KLB Mathematics Book Three Pg 248-250
|
|
7-9 |
END TERM EXAM AND CLOSING SCHOOL 🏫 |
Your Name Comes Here