If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 2 | 2 |
Matrices and Transformation
|
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation Using the Unit Square Method |
By the end of the
lesson, the learner
should be able to:
-Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 2 | 3 |
Matrices and Transformation
|
Successive Transformations
Matrix Multiplication for Combined Transformations Single Matrix for Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand the concept of successive transformations -Apply transformations in correct order -Recognize that order matters in matrix multiplication -Perform multiple transformations step by step |
-Demonstrate successive transformations with paper cutouts -Practice applying transformations in sequence -Compare results when order is changed -Work through step-by-step examples |
Exercise books
-Manila paper -Ruler -Coloured pencils -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 2 | 4 |
Matrices and Transformation
|
Inverse of a Transformation
Properties of Inverse Transformations |
By the end of the
lesson, the learner
should be able to:
-Define inverse transformation conceptually -Find inverse matrices using algebraic methods -Apply inverse transformations to return objects to original position -Verify inverse relationships using matrix multiplication |
-Demonstrate inverse transformations geometrically -Practice finding inverse matrices algebraically -Verify that A × A⁻¹ = I -Apply inverse transformations to solve problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
| 2 | 5 |
Matrices and Transformation
|
Area Scale Factor and Determinant
Shear Transformations |
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
Exercise books -Cardboard pieces -Manila paper -Ruler |
|
|
| 2 | 6 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 2 | 7 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
Isometric and Non-isometric Transformations |
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers -Paper cutouts |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 3 | 1 |
Statistics II
|
Introduction to Advanced Statistics
|
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 3 | 2 |
Statistics II
|
Working Mean Concept
Mean Using Working Mean - Simple Data |
By the end of the
lesson, the learner
should be able to:
-Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Sample datasets -Chalk/markers -Student data |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 3 | 3 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 4 |
Statistics II
|
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers -Economic data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 5 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
|
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 6 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 7 |
Statistics II
|
Deciles and Percentiles Calculations
Introduction to Cumulative Frequency |
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers -Ruler -Class data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 4 | 1 |
Statistics II
|
Drawing Cumulative Frequency Curves (Ogives)
|
By the end of the
lesson, the learner
should be able to:
-Draw accurate ogives using proper scales -Plot cumulative frequency against upper boundaries -Create smooth curves through plotted points -Label axes and scales correctly |
-Practice plotting on large manila paper -Use rulers for accurate scales -Demonstrate smooth curve drawing technique -Students create their own ogives |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 4 | 2 |
Statistics II
|
Reading Values from Ogives
Applications of Ogives |
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler -Real problem datasets |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 4 | 3 |
Statistics II
|
Introduction to Measures of Dispersion
|
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 4 | 4 |
Statistics II
|
Range and Interquartile Range
Mean Absolute Deviation |
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 4 | 5 |
Statistics II
|
Introduction to Variance
|
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 4 | 6 |
Statistics II
|
Variance Using Alternative Formula
Standard Deviation Calculations |
By the end of the
lesson, the learner
should be able to:
-Apply the formula: σ² = (Σx²/n) - x̄² -Use alternative variance formula efficiently -Compare computational methods -Solve variance problems for frequency data |
-Demonstrate both variance formulas -Show computational advantages of alternative formula -Practice with frequency tables -Students choose efficient method |
Exercise books
-Manila paper -Frequency data -Chalk/markers -Exam score data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 4 | 7 |
Statistics II
|
Standard Deviation for Grouped Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 5 | 1 |
Statistics II
Loci |
Advanced Standard Deviation Techniques
Introduction to Loci |
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers -String |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 5 | 2 |
Loci
|
Basic Locus Concepts and Laws
|
By the end of the
lesson, the learner
should be able to:
-Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Manila paper -String -Real objects |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
| 5 | 3 |
Loci
|
Perpendicular Bisector Locus
Properties and Applications of Perpendicular Bisector |
By the end of the
lesson, the learner
should be able to:
-Define perpendicular bisector locus -Construct perpendicular bisector using compass and ruler -Prove that points on perpendicular bisector are equidistant from endpoints -Apply perpendicular bisector to solve problems |
-Construct perpendicular bisector on manila paper -Measure distances to verify equidistance property -Use folding method to find perpendicular bisector -Practice with different line segments |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 4 |
Loci
|
Locus of Points at Fixed Distance from a Point
|
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 5 |
Loci
|
Locus of Points at Fixed Distance from a Line
Angle Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Define locus of points at fixed distance from straight line -Construct parallel lines at given distances -Understand cylindrical surface in 3D -Apply to practical problems like road margins |
-Construct parallel lines using ruler and set square -Mark points at equal distances from given line -Discuss road design, river banks, field boundaries -Practice with various distances and orientations |
Exercise books
-Manila paper -Ruler -Set square -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 6 |
Loci
|
Properties and Applications of Angle Bisector
|
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 5 | 7 |
Loci
|
Constant Angle Locus
Advanced Constant Angle Constructions |
By the end of the
lesson, the learner
should be able to:
-Understand constant angle locus concept -Construct constant angle loci using arc method -Apply circle theorems to constant angle problems -Solve problems involving angles in semicircles |
-Demonstrate constant angle using protractor -Construct arc passing through two points -Use angles in semicircle property -Practice with different angle measures |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 6 | 1 |
Loci
|
Introduction to Intersecting Loci
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of intersecting loci -Identify points satisfying multiple conditions -Find intersection points of two loci -Apply intersecting loci to solve practical problems |
-Demonstrate intersection of two circles -Find points equidistant from two points AND at fixed distance from third point -Solve simple two-condition problems -Practice identifying intersection points |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 6 | 2 |
Loci
|
Intersecting Circles and Lines
Triangle Centers Using Intersecting Loci |
By the end of the
lesson, the learner
should be able to:
-Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 6 | 3 |
Loci
|
Complex Intersecting Loci Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve problems with three or more conditions -Find regions satisfying multiple constraints -Apply intersecting loci to optimization problems -Use systematic approach to complex problems |
-Solve treasure hunt type problems -Find optimal locations for facilities -Apply to surveying and engineering problems -Practice systematic problem-solving approach |
Exercise books
-Manila paper -Compass -Real-world scenarios |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 6 | 4 |
Loci
|
Introduction to Loci of Inequalities
Distance Inequality Loci |
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Identify regions satisfying inequality conditions -Distinguish between boundary lines and regions -Apply inequality loci to practical constraints |
-Shade regions representing simple inequalities -Use broken and solid lines appropriately -Practice with distance inequalities -Apply to real-world constraint problems |
Exercise books
-Manila paper -Ruler -Colored pencils -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 6 | 5 |
Loci
|
Combined Inequality Loci
|
By the end of the
lesson, the learner
should be able to:
-Solve problems with multiple inequality constraints -Find intersection regions of inequality loci -Apply to optimization and feasibility problems -Use systematic shading techniques |
-Find feasible regions for multiple constraints -Solve planning problems with restrictions -Apply to resource allocation scenarios -Practice systematic region identification |
Exercise books
-Manila paper -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 6 | 6 |
Loci
|
Advanced Inequality Applications
Introduction to Loci Involving Chords |
By the end of the
lesson, the learner
should be able to:
-Apply inequality loci to linear programming introduction -Solve real-world optimization problems -Find maximum and minimum values in regions -Use graphical methods for decision making |
-Solve simple linear programming problems -Find optimal points in feasible regions -Apply to business and farming scenarios -Practice identifying corner points |
Exercise books
-Manila paper -Ruler -Real problem data -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 6 | 7 |
Loci
|
Chord-Based Constructions
|
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 7 | 1 |
Loci
|
Advanced Chord Problems
Integration of All Loci Types |
By the end of the
lesson, the learner
should be able to:
-Solve complex problems involving multiple chords -Apply power of point theorem -Find loci related to chord properties -Use chords in circle geometry proofs |
-Apply intersecting chords theorem -Solve problems with chord-secant relationships -Find loci of points with equal power -Practice with tangent-chord angles |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 7 | 2 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) -Unit circle diagrams -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 7 |
Midterm Break |
|||||||
| 8 | 1 |
Trigonometry III
|
Applications of sin²θ + cos²θ = 1
|
By the end of the
lesson, the learner
should be able to:
-Solve problems using the fundamental identity -Find missing trigonometric ratios given one ratio -Apply identity to simplify trigonometric expressions -Use identity in geometric problem solving |
-Work through examples finding cos when sin is given -Practice simplifying complex trigonometric expressions -Solve problems involving unknown angles -Apply to real-world navigation problems |
Exercise books
-Manila paper -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 8 | 2 |
Trigonometry III
|
Additional Trigonometric Identities
Introduction to Waves |
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 8 | 3 |
Trigonometry III
|
Sine and Cosine Waves
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 8 | 4 |
Trigonometry III
|
Transformations of Sine Waves
Period Changes in Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on amplitude -Plot graphs of y = k sin x for different values of k -Compare transformed waves with basic sine wave -Apply amplitude changes to real situations |
-Plot y = 2 sin x, y = 3 sin x on manila paper -Compare amplitudes with y = sin x -Demonstrate stretching effect of coefficient -Apply to sound volume or signal strength examples |
Exercise books
-Manila paper -Colored pencils -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 8 | 5 |
Trigonometry III
|
Combined Amplitude and Period Transformations
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 8 | 6 |
Trigonometry III
|
Phase Angles and Wave Shifts
General Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand concept of phase angle -Plot graphs of y = sin(x + θ) functions -Identify horizontal shifts in wave patterns -Apply phase differences to wave analysis |
-Plot y = sin(x + 45°), y = sin(x - 30°) -Demonstrate horizontal shifting of waves -Compare leading and lagging waves -Apply to electrical circuits or sound waves |
Exercise books
-Manila paper -Colored pencils -Phase shift examples -Rulers -Complex function examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 8 | 7 |
Trigonometry III
|
Cosine Wave Transformations
|
By the end of the
lesson, the learner
should be able to:
-Apply transformations to cosine functions -Plot y = a cos(bx + c) functions -Compare cosine and sine transformations -Use cosine functions in modeling |
-Plot various cosine transformations on manila paper -Compare with equivalent sine transformations -Practice identifying cosine wave parameters -Model temperature variations using cosine |
Exercise books
-Manila paper -Rulers -Temperature data |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 9 | 1 |
Trigonometry III
|
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Understand concept of trigonometric equations -Identify that trig equations have multiple solutions -Solve simple equations like sin x = 0.5 -Find all solutions in given ranges |
-Demonstrate using unit circle or graphs -Show why sin x = 0.5 has multiple solutions -Practice finding principal values -Use graphs to identify all solutions in range |
Exercise books
-Manila paper -Unit circle diagrams -Trigonometric tables -Calculators -Solution worksheets |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 2 |
Trigonometry III
|
Quadratic Trigonometric Equations
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin²x - sin x = 0 -Apply factoring techniques to trigonometric equations -Use substitution methods for complex equations -Find all solutions systematically |
-Demonstrate substitution method (let y = sin x) -Factor quadratic expressions in trigonometry -Solve resulting quadratic equations -Back-substitute to find angle solutions |
Exercise books
-Manila paper -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 3 |
Trigonometry III
|
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications -Rulers -Graphing examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 4 |
Trigonometry III
|
Trigonometric Equations with Identities
|
By the end of the
lesson, the learner
should be able to:
-Use trigonometric identities to solve equations -Apply sin²θ + cos²θ = 1 in equation solving -Convert between different trigonometric functions -Solve equations using multiple identities |
-Solve equations using fundamental identity -Convert tan equations to sin/cos form -Practice identity-based equation solving -Work through complex multi-step problems |
Exercise books
-Manila paper -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 9 | 5 |
Differentiation
|
Introduction to Rate of Change
Average Rate of Change |
By the end of the
lesson, the learner
should be able to:
-Understand concept of rate of change in daily life -Distinguish between average and instantaneous rates -Identify examples of changing quantities -Connect rate of change to gradient concepts |
-Discuss speed as rate of change of distance -Examine population growth rates -Analyze temperature change throughout the day -Connect to gradients of lines from coordinate geometry |
Exercise books
-Manila paper -Real-world examples -Graph examples -Calculators -Graph paper |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
| 9 | 6 |
Differentiation
|
Instantaneous Rate of Change
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of instantaneous rate -Recognize instantaneous rate as limit of average rates -Connect to tangent line gradients -Apply to real-world motion problems |
-Demonstrate instantaneous speed using car speedometer -Show limiting process using smaller intervals -Connect to tangent line slopes on curves -Practice with motion and growth examples |
Exercise books
-Manila paper -Tangent demonstrations -Motion examples |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
| 9 | 7 |
Differentiation
|
Gradient of Curves at Points
Introduction to Delta Notation |
By the end of the
lesson, the learner
should be able to:
-Find gradient of curve at specific points -Use tangent line method for gradient estimation -Apply limiting process to find exact gradients -Practice with various curve types |
-Draw tangent lines to curves on manila paper -Estimate gradients using tangent slopes -Use the limiting approach with chord sequences -Practice with parabolas and other curves |
Exercise books
-Manila paper -Rulers -Curve examples -Delta notation examples -Symbol practice |
KLB Secondary Mathematics Form 4, Pages 178-182
|
|
| 10 | 1 |
Differentiation
|
The Limiting Process
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of limit in differentiation -Apply "as Δx approaches zero" reasoning -Use limiting process to find exact derivatives -Practice systematic limiting calculations |
-Demonstrate limiting process with numerical examples -Show chord approaching tangent as Δx → 0 -Calculate limits using table of values -Practice systematic limit evaluation |
Exercise books
-Manila paper -Limit tables -Systematic examples |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
| 10 | 2 |
Differentiation
|
Introduction to Derivatives
Derivative of Linear Functions |
By the end of the
lesson, the learner
should be able to:
-Define derivative as limit of rate of change -Use dy/dx notation for derivatives -Understand derivative as gradient function -Connect derivatives to tangent line slopes |
-Introduce derivative notation dy/dx -Show derivative as gradient of tangent -Practice derivative concept with simple functions -Connect to previous gradient work |
Exercise books
-Manila paper -Derivative notation -Function examples -Linear function examples -Verification methods |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
| 10 | 3 |
Differentiation
|
Derivative of y = x^n (Basic Powers)
|
By the end of the
lesson, the learner
should be able to:
-Find derivatives of power functions -Apply the rule d/dx(x^n) = nx^(n-1) -Practice with x², x³, x⁴, etc. -Verify using first principles for simple cases |
-Derive d/dx(x²) = 2x using first principles -Apply power rule to various functions -Practice with x³, x⁴, x⁵ examples -Verify selected results using definition |
Exercise books
-Manila paper -Power rule examples -First principles verification |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 4 |
Differentiation
|
Derivative of Constant Functions
Derivative of Coefficient Functions |
By the end of the
lesson, the learner
should be able to:
-Understand that derivative of constant is zero -Apply to functions like y = 5, y = -3 -Explain geometric meaning of zero derivative -Combine with other differentiation rules |
-Show that horizontal lines have zero gradient -Find derivatives of constant functions -Explain why rate of change of constant is zero -Apply to mixed functions with constants |
Exercise books
-Manila paper -Constant function graphs -Geometric explanations -Coefficient examples -Rule combinations |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 5 |
Differentiation
|
Derivative of Polynomial Functions
|
By the end of the
lesson, the learner
should be able to:
-Find derivatives of polynomial functions -Apply term-by-term differentiation -Practice with various polynomial degrees -Verify results using first principles |
-Differentiate y = x³ + 2x² - 5x + 7 -Apply rule to each term separately -Practice with various polynomial types -Check results using definition for simple cases |
Exercise books
-Manila paper -Polynomial examples -Term-by-term method |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 6 |
Differentiation
|
Applications to Tangent Lines
Applications to Normal Lines |
By the end of the
lesson, the learner
should be able to:
-Find equations of tangent lines to curves -Use derivatives to find tangent gradients -Apply point-slope form for tangent equations -Solve problems involving tangent lines |
-Find tangent to y = x² at point (2, 4) -Use derivative to get gradient at specific point -Apply y - y₁ = m(x - x₁) formula -Practice with various curves and points |
Exercise books
-Manila paper -Tangent line examples -Point-slope applications -Normal line examples -Perpendicular concepts |
KLB Secondary Mathematics Form 4, Pages 187-189
|
|
| 10 | 7 |
Differentiation
|
Introduction to Stationary Points
|
By the end of the
lesson, the learner
should be able to:
-Define stationary points as points where dy/dx = 0 -Identify different types of stationary points -Understand geometric meaning of zero gradient -Find stationary points by solving dy/dx = 0 |
-Show horizontal tangents at stationary points -Find stationary points of y = x² - 4x + 3 -Identify maximum, minimum, and inflection points -Practice finding where dy/dx = 0 |
Exercise books
-Manila paper -Curve sketches -Stationary point examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
| 11 | 1 |
Differentiation
|
Types of Stationary Points
Finding and Classifying Stationary Points |
By the end of the
lesson, the learner
should be able to:
-Distinguish between maximum and minimum points -Identify points of inflection -Use first derivative test for classification -Apply gradient analysis around stationary points |
-Analyze gradient changes around stationary points -Use sign analysis of dy/dx -Classify stationary points by gradient behavior -Practice with various function types |
Exercise books
-Manila paper -Sign analysis charts -Classification examples -Systematic templates -Complete examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
| 11 | 2 |
Differentiation
|
Curve Sketching Using Derivatives
|
By the end of the
lesson, the learner
should be able to:
-Use derivatives to sketch accurate curves -Identify key features: intercepts, stationary points -Apply systematic curve sketching method -Combine algebraic and graphical analysis |
-Sketch y = x³ - 3x² + 2 using derivatives -Find intercepts, stationary points, and behavior -Use systematic curve sketching approach -Verify sketches using derivative information |
Exercise books
-Manila paper -Curve sketching templates -Systematic method |
KLB Secondary Mathematics Form 4, Pages 195-197
|
|
| 11 | 3 |
Differentiation
|
Introduction to Kinematics Applications
Acceleration as Second Derivative |
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to displacement-time relationships -Understand velocity as first derivative of displacement -Find velocity functions from displacement functions -Apply to motion problems |
-Find velocity from s = t³ - 2t² + 5t -Apply v = ds/dt to motion problems -Practice with various displacement functions -Connect to real-world motion scenarios |
Exercise books
-Manila paper -Motion examples -Kinematics applications -Second derivative examples -Motion analysis |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
| 11 | 4 |
Differentiation
|
Motion Problems and Applications
Introduction to Optimization |
By the end of the
lesson, the learner
should be able to:
-Solve complete motion analysis problems -Find displacement, velocity, acceleration relationships -Apply to real-world motion scenarios -Use derivatives for motion optimization |
-Analyze complete motion of falling object -Find when particle changes direction -Calculate maximum height in projectile motion -Apply to vehicle motion problems |
Exercise books
-Manila paper -Complete motion examples -Real scenarios -Optimization examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
| 11 | 5 |
Differentiation
|
Geometric Optimization Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply calculus to geometric optimization -Find maximum areas and minimum perimeters -Use derivatives for shape optimization -Apply to construction and design problems |
-Find dimensions for maximum area enclosure -Optimize container volumes and surface areas -Apply to architectural design problems -Practice with various geometric constraints |
Exercise books
-Manila paper -Geometric examples -Design applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 11 | 6 |
Differentiation
|
Business and Economic Applications
Advanced Optimization Problems |
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to profit and cost functions -Find marginal cost and marginal revenue -Use calculus for business optimization -Apply to Kenyan business scenarios |
-Find maximum profit using calculus -Calculate marginal cost and revenue -Apply to agricultural and manufacturing examples -Use derivatives for business decision-making |
Exercise books
-Manila paper -Business examples -Economic applications -Complex examples -Engineering applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 11 | 7 |
Matrices and Transformations
|
Transformation on a Cartesian plane
Basic Transformation Matrices Identification of transformation matrix |
By the end of the
lesson, the learner
should be able to:
-Define transformation in mathematics -Identify different types of transformations -Plot objects and their images on Cartesian plane -Relate transformation to movement of objects |
-Q/A on coordinate geometry review -Drawing objects and their images on Cartesian plane -Practical demonstration of moving objects (reflection, rotation) -Practice identifying transformations from diagrams -Class discussion on real-life transformations |
Square boards
-Peg boards -Graph papers -Mirrors -Rulers -Protractors -Calculators Graph papers -Exercise books -Matrix examples |
KLB Secondary Mathematics Form 4, Pages 1-6
|
|
| 12 | 1 |
Matrices and Transformations
|
Two Successive Transformations
Complex Successive Transformations Single matrix of transformation for successive transformations |
By the end of the
lesson, the learner
should be able to:
-Apply two transformations in sequence -Understand that order of transformations matters -Find final image after two transformations -Compare results of different orders |
-Physical demonstration of successive transformations -Step-by-step working showing AB ≠ BA -Drawing intermediate and final images -Practice with reflection followed by rotation -Group work comparing different orders |
Square boards
-Peg boards -Graph papers -Colored pencils -Rulers -Calculators Calculators -Matrix multiplication charts -Exercise books |
KLB Secondary Mathematics Form 4, Pages 15-17
|
|
| 12 | 2 |
Matrices and Transformations
|
Matrix Multiplication Properties
Identity Matrix and Transformation Inverse of a matrix |
By the end of the
lesson, the learner
should be able to:
-Understand that matrix multiplication is not commutative (AB ≠ BA) -Apply associative property: (AB)C = A(BC) -Calculate products of 2×2 matrices accurately -Solve problems involving multiple matrix operations |
-Detailed demonstration showing AB ≠ BA with examples -Practice calculations with various matrix pairs -Associativity verification with three matrices -Problem-solving session with complex matrix products -Individual practice from textbook exercises |
Calculators
-Exercise books -Matrix worksheets -Formula sheets -Graph papers -Matrix examples |
KLB Secondary Mathematics Form 4, Pages 21-24
|
|
| 12 | 3 |
Matrices and Transformations
|
Determinant and Area Scale Factor
|
By the end of the
lesson, the learner
should be able to:
-Calculate determinant of 2×2 matrix -Understand relationship between determinant and area scaling -Apply formula: area scale factor = |
det(matrix)
|
-Solve problems involving area changes under transformations |
-Determinant calculation practice -Demonstration using shapes with known areas -Establishing that area scale factor = |
|
| 12 | 4 |
Matrices and Transformations
|
Area scale factor and determinant relationship
Shear Transformation |
By the end of the
lesson, the learner
should be able to:
-Establish mathematical relationship between determinant and area scaling -Explain why absolute value is needed -Apply relationship in various transformation problems -Understand orientation change when determinant is negative |
-Mathematical proof of area scale factor relationship -Examples with positive and negative determinants -Discussion on orientation preservation/reversal -Practice problems from textbook Ex 1.5 -Verification through direct area calculations |
Calculators
-Graph papers -Formula sheets -Area calculation tools Square boards -Flexible materials -Rulers -Calculators |
KLB Secondary Mathematics Form 4, Pages 26-27
|
|
| 12 | 5 |
Matrices and Transformations
Integration |
Stretch Transformation and Review
Introduction to Reverse Differentiation |
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and its matrices -Calculate effect of stretch on areas and lengths -Compare and contrast shear and stretch -Review all transformation types and their properties |
-Demonstration using elastic materials -Finding matrices for stretch in x and y directions -Comparison table: isometric vs non-isometric transformations -Comprehensive review of all transformation types -Problem-solving session covering entire unit |
Graph papers
-Elastic materials -Calculators -Comparison charts -Review materials -Differentiation charts -Exercise books -Function examples |
KLB Secondary Mathematics Form 4, Pages 28-38
|
|
| 12 | 6 |
Integration
|
Basic Integration Rules - Power Functions
Integration of Polynomial Functions Finding Particular Solutions |
By the end of the
lesson, the learner
should be able to:
-Apply power rule for integration: ∫xⁿ dx = xⁿ⁺¹/(n+1) + c -Understand the constant of integration and why it's necessary -Integrate simple power functions where n ≠ -1 -Practice with positive, negative, and fractional powers |
-Derivation of power rule through reverse differentiation -Multiple examples with different values of n -Explanation of arbitrary constant using family of curves -Practice exercises with various power functions -Common mistakes discussion and correction |
Calculators
-Graph papers -Power rule charts -Exercise books -Algebraic worksheets -Polynomial examples Graph papers -Calculators -Curve examples |
KLB Secondary Mathematics Form 4, Pages 223-225
|
|
| 12 | 7 |
Integration
|
Introduction to Definite Integrals
Evaluating Definite Integrals Area Under Curves - Single Functions Areas Below X-axis and Mixed Regions Area Between Two Curves |
By the end of the
lesson, the learner
should be able to:
-Define definite integrals using limit notation -Understand the difference between definite and indefinite integrals -Learn proper notation: ∫ₐᵇ f(x)dx -Understand geometric meaning as area under curve |
-Introduction to definite integral concept and notation -Geometric interpretation using simple curves -Comparison between ∫f(x)dx and ∫ₐᵇf(x)dx -Discussion on limits of integration -Basic examples with simple functions |
Graph papers
-Geometric models -Integration notation charts -Calculators Calculators -Step-by-step worksheets -Exercise books -Evaluation charts -Curve sketching tools -Colored pencils -Area grids -Curve examples -Colored materials -Equation solving aids |
KLB Secondary Mathematics Form 4, Pages 226-228
|
|
Your Name Comes Here