Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1-2
THE MOLE
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept
By the end of the lesson, the learner should be able to:
Define relative mass using practical examples
Compare masses of different objects using a reference standard
Explain the concept of relative atomic mass
Identify carbon-12 as the reference standard
Define Avogadro's constant and its value
Explain the concept of a mole as a counting unit
Relate molar mass to relative atomic mass
Calculate number of atoms in given masses of elements
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
KLB Secondary Chemistry Form 3, Pages 25-27
KLB Secondary Chemistry Form 3, Pages 27-30
2 3
THE MOLE
Interconversion of Mass and Moles for Elements
By the end of the lesson, the learner should be able to:
Apply the formula: moles = mass/molar mass
Calculate mass from given moles of elements
Convert between moles and number of atoms
Solve numerical problems involving moles and mass
Worked examples: Mass-mole conversions using triangle method. Supervised practice: Calculate moles in given masses of common elements. Problem solving: Convert moles to atoms using Avogadro's number. Assignment: Practice problems on interconversion.
Scientific calculators, Periodic table, Worked example charts, Formula triangles
KLB Secondary Chemistry Form 3, Pages 30-32
2 4
THE MOLE
Molecules and Moles - Diatomic Elements
By the end of the lesson, the learner should be able to:
Distinguish between atoms and molecules
Define relative molecular mass
Calculate moles of molecules from given mass
Determine number of atoms in molecular compounds
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Molecular models, Charts showing diatomic elements, Scientific calculators
KLB Secondary Chemistry Form 3, Pages 29-30
2 5
THE MOLE
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method
By the end of the lesson, the learner should be able to:
Define empirical formula
Determine empirical formula from experimental data
Calculate mole ratios from mass data
Express results as simplest whole number ratios
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
KLB Secondary Chemistry Form 3, Pages 32-35
3 1-2
THE MOLE
Empirical Formula - Percentage Composition Method
Molecular Formula - Determination from Empirical Formula
By the end of the lesson, the learner should be able to:
Calculate empirical formula from percentage composition
Convert percentages to moles
Determine simplest whole number ratios
Apply method to various compounds
Define molecular formula
Relate molecular formula to empirical formula
Calculate molecular formula using molecular mass
Apply the relationship (empirical formula)ₙ = molecular formula
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
Scientific calculators, Percentage composition charts, Worked example displays
Scientific calculators, Molecular mass charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 37-38
KLB Secondary Chemistry Form 3, Pages 38-40
3 3
THE MOLE
Molecular Formula - Combustion Analysis
By the end of the lesson, the learner should be able to:
Determine molecular formula from combustion data
Calculate moles of products in combustion
Relate product moles to reactant composition
Apply combustion analysis to hydrocarbons
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
KLB Secondary Chemistry Form 3, Pages 40-41
3 4
THE MOLE
Concentration and Molarity of Solutions
By the end of the lesson, the learner should be able to:
Define concentration and molarity of solutions
Calculate molarity from mass and volume data
Convert between different concentration units
Apply molarity calculations to various solutions
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
Scientific calculators, Molarity charts, Various salt samples for demonstration
KLB Secondary Chemistry Form 3, Pages 41-43
3 5
THE MOLE
Preparation of Molar Solutions
By the end of the lesson, the learner should be able to:
Describe procedure for preparing molar solutions
Use volumetric flasks correctly
Calculate masses needed for specific molarities
Prepare standard solutions accurately
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
KLB Secondary Chemistry Form 3, Pages 43-46
4 1-2
THE MOLE
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations
By the end of the lesson, the learner should be able to:
Define dilution process
Apply dilution formula M₁V₁ = M₂V₂
Calculate concentrations after dilution
Prepare dilute solutions from concentrated ones
Determine chemical equations from experimental data
Calculate mole ratios from mass measurements
Write balanced chemical equations
Apply stoichiometry to displacement reactions
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
KLB Secondary Chemistry Form 3, Pages 46-50
KLB Secondary Chemistry Form 3, Pages 50-53
4 3
THE MOLE
Stoichiometry - Precipitation Reactions
By the end of the lesson, the learner should be able to:
Investigate stoichiometry of precipitation reactions
Determine mole ratios from volume measurements
Write ionic equations for precipitation
Analyze limiting and excess reagents
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
KLB Secondary Chemistry Form 3, Pages 53-56
4 4
THE MOLE
Stoichiometry - Gas Evolution Reactions
By the end of the lesson, the learner should be able to:
Determine stoichiometry of gas-producing reactions
Collect and measure gas volumes
Calculate mole ratios involving gases
Write equations for acid-carbonate reactions
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
KLB Secondary Chemistry Form 3, Pages 56-58
4 5
THE MOLE
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization
By the end of the lesson, the learner should be able to:
Define volumetric analysis and titration
Identify and use titration apparatus correctly
Explain functions of pipettes and burettes
Demonstrate proper reading techniques
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
KLB Secondary Chemistry Form 3, Pages 58-59
5 1-2
THE MOLE
Titration - Diprotic Acids
Standardization of Solutions
By the end of the lesson, the learner should be able to:
Investigate titrations involving diprotic acids
Determine basicity of acids from titration data
Compare volumes needed for mono- and diprotic acids
Write equations for diprotic acid reactions
Define standardization process
Standardize HCl using Na₂CO₃ as primary standard
Calculate accurate concentrations from titration data
Understand importance of primary standards
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
KLB Secondary Chemistry Form 3, Pages 62-65
KLB Secondary Chemistry Form 3, Pages 65-67
5 3
THE MOLE
Back Titration Method
By the end of the lesson, the learner should be able to:
Understand principle of back titration
Apply back titration to determine composition
Calculate concentrations using back titration data
Determine atomic masses from back titration
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
KLB Secondary Chemistry Form 3, Pages 67-70
5 4
THE MOLE
Redox Titrations - Principles
By the end of the lesson, the learner should be able to:
Explain principles of redox titrations
Identify color changes in redox reactions
Understand self-indicating nature of some redox reactions
Write ionic equations for redox processes
Teacher exposition: Redox titration principles. Demonstrate color changes: MnO₄⁻ (purple) → Mn²⁺ (colorless), Cr₂O₇²⁻ (orange) → Cr³⁺ (green). Discussion: Self-indicating reactions. Write half-equations and overall ionic equations.
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
KLB Secondary Chemistry Form 3, Pages 68-70
5 5
THE MOLE
Redox Titrations - KMnO₄ Standardization
By the end of the lesson, the learner should be able to:
Standardize KMnO₄ solution using iron(II) salt
Calculate molarity from redox titration data
Apply 1:5 mole ratio in calculations
Prepare solutions for redox titrations
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
KLB Secondary Chemistry Form 3, Pages 70-72
6 1-2
THE MOLE
Water of Crystallization Determination
Atomicity and Molar Gas Volume
By the end of the lesson, the learner should be able to:
Determine water of crystallization in hydrated salts
Use redox titration to find formula of hydrated salt
Calculate value of 'n' in crystallization formulas
Apply analytical data to determine complete formulas
Define atomicity of gaseous elements
Classify gases as monoatomic, diatomic, or triatomic
Determine molar gas volume experimentally
Calculate gas densities and molar masses
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
KLB Secondary Chemistry Form 3, Pages 72-73
KLB Secondary Chemistry Form 3, Pages 73-75
6 3
THE MOLE
Combining Volumes of Gases - Experimental Investigation
By the end of the lesson, the learner should be able to:
Investigate Gay-Lussac's law experimentally
Measure combining volumes of reacting gases
Determine simple whole number ratios
Write equations from volume relationships
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
KLB Secondary Chemistry Form 3, Pages 75-77
6 4
THE MOLE
Gas Laws and Chemical Equations
By the end of the lesson, the learner should be able to:
Apply Avogadro's law to chemical reactions
Use volume ratios to determine chemical equations
Calculate product volumes from reactant volumes
Solve problems involving gas stoichiometry
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
Scientific calculators, Gas law charts, Volume ratio examples
KLB Secondary Chemistry Form 3, Pages 77-79
6 5
NITROGEN AND ITS COMPOUNDS
Introduction to Nitrogen - Properties and Occurrence
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
By the end of the lesson, the learner should be able to:
Describe position of nitrogen in the periodic table
State electron configuration of nitrogen
Identify natural occurrence of nitrogen
Explain why nitrogen exists as diatomic molecules
Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength.
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
KLB Secondary Chemistry Form 3, Pages 119
7 1-2
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Prepare nitrogen gas from ammonium compounds
Use sodium nitrite and ammonium chloride method
Test physical and chemical properties of nitrogen
Write equations for nitrogen preparation
Describe physical properties of nitrogen
Explain chemical inertness of nitrogen
Describe reactions at high temperatures
List industrial uses of nitrogen
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
KLB Secondary Chemistry Form 3, Pages 121-123
7 3
NITROGEN AND ITS COMPOUNDS
Nitrogen(I) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate
Test physical and chemical properties
Explain decomposition and oxidizing properties
Describe uses of nitrogen(I) oxide
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
KLB Secondary Chemistry Form 3, Pages 123-125
7 4
NITROGEN AND ITS COMPOUNDS
Nitrogen(II) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid
Observe colorless gas and brown fumes formation
Test reactions with air and iron(II) sulfate
Explain oxidation in air to NO₂
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
KLB Secondary Chemistry Form 3, Pages 125-127
7 5
NITROGEN AND ITS COMPOUNDS
Nitrogen(IV) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid
Prepare from thermal decomposition of nitrates
Test properties including equilibrium with N₂O₄
Describe reactions and uses
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
KLB Secondary Chemistry Form 3, Pages 127-131
8

Midterm

9 1-2
NITROGEN AND ITS COMPOUNDS
Comparison of Nitrogen Oxides and Environmental Effects
Laboratory Preparation of Ammonia
By the end of the lesson, the learner should be able to:
Compare preparation methods of nitrogen oxides
Distinguish between different nitrogen oxides
Explain formation in vehicle engines
Describe environmental pollution effects
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
KLB Secondary Chemistry Form 3, Pages 123-131
KLB Secondary Chemistry Form 3, Pages 131-134
9 3
NITROGEN AND ITS COMPOUNDS
Preparation of Aqueous Ammonia and Solubility
By the end of the lesson, the learner should be able to:
Prepare aqueous ammonia solution
Demonstrate high solubility using fountain experiment
Explain alkaline properties of aqueous ammonia
Write equations for ammonia in water
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
KLB Secondary Chemistry Form 3, Pages 134-136
9 4
NITROGEN AND ITS COMPOUNDS
Reactions of Aqueous Ammonia with Metal Ions
By the end of the lesson, the learner should be able to:
Test reactions of aqueous ammonia with various metal ions
Observe precipitate formation and dissolution
Explain complex ion formation
Use reactions for metal ion identification
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
KLB Secondary Chemistry Form 3, Pages 136-138
9 5
NITROGEN AND ITS COMPOUNDS
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process
By the end of the lesson, the learner should be able to:
Test neutralization reactions with acids
Investigate combustion of ammonia
Examine catalytic oxidation with platinum
Study reducing properties with metal oxides
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
KLB Secondary Chemistry Form 3, Pages 138-140
10 1-2
NITROGEN AND ITS COMPOUNDS
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
By the end of the lesson, the learner should be able to:
List major uses of ammonia
Explain importance as fertilizer
Calculate nitrogen percentages in fertilizers
Compare different nitrogenous fertilizers
Calculate percentage nitrogen in various fertilizers
Compare fertilizer effectiveness
Prepare simple nitrogenous fertilizers
Discuss environmental considerations
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
KLB Secondary Chemistry Form 3, Pages 141-144
10 3
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
KLB Secondary Chemistry Form 3, Pages 144-145
10 4
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Describe catalytic oxidation process
Explain raw materials and conditions
Draw flow diagram of industrial process
Calculate theoretical yields and efficiency
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
KLB Secondary Chemistry Form 3, Pages 145-147
10 5
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Metals
By the end of the lesson, the learner should be able to:
Test reactions with various metals
Explain absence of hydrogen gas production
Observe formation of nitrogen oxides
Write equations for metal-acid reactions
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
KLB Secondary Chemistry Form 3, Pages 147-150
11 1-2
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Test reactions with carbonates and hydrogen carbonates
Test neutralization with metal hydroxides and oxides
Identify products formed
Write balanced chemical equations
Demonstrate strong oxidizing properties
Test reactions with FeSO₄, sulfur, and copper
Observe formation of nitrogen dioxide
Explain electron transfer in oxidation
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 3, Pages 147-150
KLB Secondary Chemistry Form 3, Pages 150-151
11 3
NITROGEN AND ITS COMPOUNDS
Uses of Nitric(V) Acid and Introduction to Nitrates
By the end of the lesson, the learner should be able to:
List major industrial uses of nitric acid
Explain importance in fertilizer manufacture
Describe use in explosives and dyes
Introduce nitrate salts and their preparation
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
KLB Secondary Chemistry Form 3, Pages 151
11 4
NITROGEN AND ITS COMPOUNDS
Action of Heat on Nitrates - Decomposition Patterns
By the end of the lesson, the learner should be able to:
Test thermal decomposition of different nitrates
Classify decomposition patterns based on metal reactivity
Identify products formed on heating
Write equations for decomposition reactions
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
KLB Secondary Chemistry Form 3, Pages 151-153
11 5
NITROGEN AND ITS COMPOUNDS
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Perform brown ring test for nitrates
Explain mechanism of complex formation
Use alternative copper test method
Apply tests to unknown samples
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
KLB Secondary Chemistry Form 3, Pages 153-154
12 1-2
NITROGEN AND ITS COMPOUNDS
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry
By the end of the lesson, the learner should be able to:
Analyze methods to reduce nitrogen pollution
Design pollution control strategies
Evaluate effectiveness of current measures
Propose new solutions for environmental protection
Solve complex problems involving nitrogen compounds
Apply knowledge to industrial processes
Calculate yields and percentages in reactions
Analyze experimental data and results
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157
12 3
NITROGEN AND ITS COMPOUNDS
Laboratory Practical Assessment - Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Demonstrate practical skills in nitrogen chemistry
Perform qualitative analysis of nitrogen compounds
Apply safety procedures correctly
Interpret experimental observations accurately
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
KLB Secondary Chemistry Form 3, Pages 119-157
12 4
NITROGEN AND ITS COMPOUNDS
Industrial Applications and Economic Importance
By the end of the lesson, the learner should be able to:
Evaluate economic importance of nitrogen industry
Analyze industrial production costs and benefits
Compare different manufacturing processes
Assess impact on agricultural productivity
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
KLB Secondary Chemistry Form 3, Pages 119-157
12 5
NITROGEN AND ITS COMPOUNDS
Chapter Review and Integration
By the end of the lesson, the learner should be able to:
Synthesize all nitrogen chemistry concepts
Compare preparation methods for nitrogen compounds
Relate structure to properties and reactivity
Connect laboratory and industrial processes
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
KLB Secondary Chemistry Form 3, Pages 119-157

Your Name Comes Here


Download

Feedback