Home






SCHEME OF WORK
Biology
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
REPRODUCTION IN PLANTS AND ANIMALS
Introduction and Importance of Reproduction
Chromosomes and Genes
By the end of the lesson, the learner should be able to:
Define reproduction and distinguish between asexual and sexual reproduction. Explain the importance of reproduction for species survival. State the role of cell division in reproduction.
Q/A: Review of basic reproduction concepts. Discussion of reproduction as biological process for producing new individuals. Teacher exposition of species survival importance. Q/A: Examples of organisms in danger due to poor reproduction (cheetah).
Charts - Types of reproduction, Examples of reproduction in different organisms
Charts - Chromosome structure, Examples of chromosome numbers in different species
Certificate Biology Form 3, Page 99
2 2
REPRODUCTION IN PLANTS AND ANIMALS
Mitosis - Introduction and Stages
Mitosis - Differences in Plants and Animals
By the end of the lesson, the learner should be able to:
Define mitosis and explain its significance. Describe the stages of mitosis in detail. Identify sites where mitosis occurs in plants and animals.
Detailed study of mitosis stages using Fig 3.1: Prophase (early and late), Metaphase, Anaphase, Telophase, Interphase. Discussion of chromosome behavior, spindle formation, cytokinesis. Q/A: Sites of mitosis - growth areas, tissue repair.
Charts - Fig 3.1 mitosis stages, Models of cell division, Microscope slides of mitosis
Charts - Fig 3.2 plant mitosis, Microscopes, Onion root tips, Acetocarmine stain, Glass slides, Cover slips
Certificate Biology Form 3, Pages 100-102
2 3
REPRODUCTION IN PLANTS AND ANIMALS
Meiosis - Introduction and Meiosis I
Meiosis II and Comparison with Mitosis
By the end of the lesson, the learner should be able to:
Define meiosis as reduction division. Explain the need for meiosis in sexual reproduction. Describe stages of Meiosis I in detail. Compare homologous chromosomes and genetic crossing over.
Teacher exposition of meiosis producing haploid gametes. Detailed study of Meiosis I using Fig 3.3A: Prophase I (bivalent formation, crossing over), Metaphase I, Anaphase I, Telophase I. Discussion of genetic crossing over at chiasmata.
Charts - Fig 3.3A Meiosis I stages, Diagrams of homologous chromosomes, Crossing over illustrations
Charts - Fig 3.3B Meiosis II stages, Table 3.1 comparison chart, Summary diagrams
Certificate Biology Form 3, Pages 103-105
2 4-5
REPRODUCTION IN PLANTS AND ANIMALS
Introduction to Reproduction
Cell Division - Mitosis
Mitosis in Young Root Tip
By the end of the lesson, the learner should be able to:
To distinguish between sexual and asexual reproduction. To state the importance of reproduction. To define genes and chromosomes. To describe the role of chromosomes in cell division.
To describe the process of mitosis. To identify the stages of mitosis. To explain the significance of mitosis.
Q/A: Review classification concepts. Discussion: Definition of reproduction. Teacher exposition: Types of reproduction with examples. Tabulate differences between sexual and asexual reproduction. Q/A: Importance of reproduction in organisms.
Teacher exposition: Stages of mitosis with diagrams. Drawing and labeling stages of mitosis. Discussion: Importance of mitosis in growth and repair. Q/A: Comparison of daughter cells with parent cell.
Charts showing types of reproduction, Textbook, Wall charts
Charts showing mitosis stages, Microscope slides, Drawing materials
Onion root tips, Microscope, 1M HCl, Cover slides, Iodine solution, Glass slides
Certificate Biology Form 3, Pages 99-100
Certificate Biology Form 3, Pages 100-102
3 1
REPRODUCTION IN PLANTS AND ANIMALS
Meiosis Process
Meiosis in Plant Cells
By the end of the lesson, the learner should be able to:
To distinguish meiosis from mitosis. To explain the principle underlying meiosis. To describe first and second meiotic divisions.
Exposition: Principles of meiosis. Drawing diagrams showing stages of meiosis I and II. Discussion: Differences between mitosis and meiosis. Tabulate comparison of mitosis and meiosis.
Charts showing meiosis stages, Drawing materials, Textbook
Flower buds, 1M HCl, Heat source, Glass slides, Filter paper, Microscope
Certificate Biology Form 3, Pages 103-105
3 2
REPRODUCTION IN PLANTS AND ANIMALS
Asexual Reproduction - Binary Fission
Spore Formation and Budding
By the end of the lesson, the learner should be able to:
To identify types of asexual reproduction. To describe binary fission in amoeba. To explain conditions for binary fission.
Q/A: Types of asexual reproduction. Teacher demonstration: Drawing stages of binary fission. Discussion: Process of binary fission in amoeba. Examination of prepared slides showing binary fission.
Charts showing binary fission, Prepared slides of amoeba, Microscope, Drawing materials
Bread/ugali mould, Microscope, Yeast culture, 10% sugar solution, Methylene blue, Hand lens
Certificate Biology Form 3, Page 113
3 3
REPRODUCTION IN PLANTS AND ANIMALS
Sexual Reproduction in Plants - Flower Structure
By the end of the lesson, the learner should be able to:
To draw and label a flower. To identify parts of a flower. To explain flower terminologies. To count sepals, petals, stamens and carpels.
Practical work: Examining bean flowers, morning glory, and hibiscus. Dissection of flowers to identify parts. Counting floral parts and recording. Drawing longitudinal section of flower. Discussion: Functions of flower parts.
Bean flowers, Morning glory, Hibiscus, Hand lens, Scalpels, Drawing materials
Certificate Biology Form 3, Pages 115-117
3 4-5
REPRODUCTION IN PLANTS AND ANIMALS
Pollination - Insect Pollinated Flowers
Wind-Pollinated Flowers and Adaptations
By the end of the lesson, the learner should be able to:
To define pollination. To identify agents of pollination. To describe structure of insect-pollinated flowers. To examine insect-pollinated flowers.
To describe structure of wind-pollinated flowers. To identify adaptive features of wind-pollinated flowers. To compare insect and wind pollination.
Q/A: Definition and agents of pollination. Practical examination: Structure of insect-pollinated flowers. Identification of adaptive features. Comparison with wind-pollinated flowers. Discussion: Importance of bright colors and nectar.
Practical examination: Structure of grass flowers, maize tassels. Identification of glumes, spikes, spikelets. Tabulate differences between insect and wind-pollinated flowers. Discussion: Adaptive features for wind pollination.
Insect-pollinated flowers, Hand lens, Measuring rulers, Drawing materials
Wind-pollinated flowers (grass, maize), Hand lens, Charts, Drawing materials
Certificate Biology Form 3, Pages 120-121
4 1
REPRODUCTION IN PLANTS AND ANIMALS
Self-Pollination Prevention and Fertilisation
By the end of the lesson, the learner should be able to:
To discuss mechanisms preventing self-pollination. To describe fertilisation process in flowering plants. To explain double fertilisation.
Discussion: Methods preventing self-pollination. Teacher exposition: Process of fertilisation. Drawing diagrams showing fertilisation stages. Q/A: Significance of double fertilisation. Discussion: Formation of zygote and endosperm.
Charts showing fertilisation, Drawing materials, Textbook
Certificate Biology Form 3, Pages 121-123
4 2
REPRODUCTION IN PLANTS AND ANIMALS
Seed and Fruit Development
By the end of the lesson, the learner should be able to:
To explain seed formation. To describe fruit development. To classify fruits using specific criteria.
Discussion: Process of seed formation from ovule. Explanation of fruit development from ovary. Practical work: Examining variety of fruits. Classification of fruits into types. Recording observations and drawing fruits.
Variety of fruits, Petri dishes, Scalpels, Drawing materials, Charts
Certificate Biology Form 3, Pages 123-126
4 3
REPRODUCTION IN PLANTS AND ANIMALS
Placentation and Internal Fruit Structure
By the end of the lesson, the learner should be able to:
To define placentation. To identify types of placentation. To label internal structure of fruits. To examine ovaries of various fruits.
Teacher exposition: Types of placentation. Practical examination: Ovaries of beans, sunflower, pawpaw, orange. Drawing diagrams showing placentation types. Vertical sections of fruits showing internal structure.
Fruits (beans, sunflower, pawpaw, orange), Scalpels, Drawing materials
Certificate Biology Form 3, Pages 124-130
4 4-5
REPRODUCTION IN PLANTS AND ANIMALS
Fruit and Seed Dispersal
Review and Assessment
By the end of the lesson, the learner should be able to:
To explain adaptive features of fruits and seeds. To identify agents of dispersal. To classify fruits and seeds by dispersal method.
To consolidate understanding of reproduction in plants. To apply knowledge in problem-solving. To prepare for examinations.
Practical examination: Various fruits and seeds. Grouping according to dispersal methods. Discussion: Adaptive features for wind, water, animal dispersal. Demonstration of seed dispersal mechanisms. Recording observations of external features.
Comprehensive review: Q/A session on all topics covered. Problem-solving exercises on reproduction processes. Drawing practice: Flower parts, fertilisation, fruit types. Written assessment covering unit objectives. Discussion of difficult concepts.
Variety of fruits and seeds, Hand lens, Drawing materials, Collection containers
Past examination papers, Drawing materials, Assessment sheets, Charts for reference
Certificate Biology Form 3, Pages 130-131
Certificate Biology Form 3, Pages 113-143
5 1
REPRODUCTION IN PLANTS AND ANIMALS
Introduction and Fertilisation Types
By the end of the lesson, the learner should be able to:
To distinguish between sexual and asexual reproduction in animals. To compare external and internal fertilisation. To give examples of animals using each method. To explain advantages of each fertilisation type.
Q/A: Review plant reproduction concepts. Discussion: Types of reproduction in animals and hermaphrodites. Detailed comparison: External vs internal fertilisation with examples. Tabulate differences and advantages of each method.
Charts showing reproduction types and fertilisation, Textbook, Wall charts
Certificate Biology Form 3, Pages 147-148
5 2
REPRODUCTION IN PLANTS AND ANIMALS
Reproduction in Amphibia and Mammalian Characteristics
Female Reproductive System Structure
By the end of the lesson, the learner should be able to:
To describe reproduction in frogs and toads. To explain seasonal breeding and egg protection. To state characteristics of mammalian reproduction. To define viviparous, placental mammals and mammary glands.
Examination of frog egg masses and jelly coating functions. Discussion: Seasonal breeding patterns and tadpole development. Teacher exposition: Mammalian reproduction characteristics. Q/A: Viviparous vs oviparous reproduction and mammary gland functions.
Frog eggs specimens, Charts showing amphibian and mammalian reproduction, Hand lens
Charts of female reproductive system, Drawing materials, Models if available, Textbook
Certificate Biology Form 3, Pages 148-149
5 3
REPRODUCTION IN PLANTS AND ANIMALS
Stages of Reproduction and Oogenesis
Menstrual Cycle - Follicle Development and Ovulation
By the end of the lesson, the learner should be able to:
To list the stages of reproduction in mammals. To describe oogenesis from fetal development to puberty. To explain primordial follicle formation. To relate oogenesis to reproductive maturity.
Teacher exposition: Four main reproductive stages overview. Detailed discussion: Oogenesis process from fetal development. Q/A: Primordial follicle formation and puberty changes. Drawing diagrams showing follicle development stages.
Flow charts, Oogenesis diagrams, Drawing materials, Textbook
Menstrual cycle charts, Drawing materials, Textbook
Certificate Biology Form 3, Pages 151-152
5 4-5
REPRODUCTION IN PLANTS AND ANIMALS
Hormonal Control and Menstrual Phases
Ovum Structure and Fertilisation Process
Early Development and Twins Formation
By the end of the lesson, the learner should be able to:
To identify hormones controlling menstrual cycle. To explain FSH, LH, oestrogen and progesterone functions. To describe menstrual cycle phases and endometrium changes. To explain negative feedback mechanisms.
To draw and label structure of human ovum. To describe sperm movement in female tract. To explain acrosome function during fertilisation. To outline zygote formation and nuclear fusion.
Detailed discussion: Four main hormones and their interactions. Graphical analysis: Hormone levels throughout cycle. Discussion: Endometrium thickening and breakdown phases. Q/A: Negative feedback control mechanisms and menstruation.
Drawing and labeling: Mature human ovum structure. Discussion: Sperm journey from vagina to oviduct. Teacher exposition: Acrosome enzymes and zona pellucida penetration. Q/A: Nuclear fusion, chromosome combination and zygote formation.
Hormone level graphs, Menstrual cycle phase charts, Textbook
Ovum structure charts, Fertilisation diagrams, Drawing materials, Textbook
Developmental stages charts, Twin formation diagrams, Drawing materials, Textbook
Certificate Biology Form 3, Pages 154-156
Certificate Biology Form 3, Pages 155-157
6 1
REPRODUCTION IN PLANTS AND ANIMALS
Implantation and Pregnancy Indicators
By the end of the lesson, the learner should be able to:
To define implantation and describe the process. To explain chorionic villi formation and anchoring. To identify early signs of pregnancy. To explain HCG hormone function and detection.
Detailed discussion: Implantation timing and chorionic villi development. Teacher exposition: Blastocyst embedding in endometrium. Discussion: Early pregnancy symptoms and HCG hormone. Q/A: Laboratory confirmation methods and pregnancy tests.
Implantation charts, Pregnancy test demonstration materials, Textbook
Certificate Biology Form 3, Pages 158-159
6 2
REPRODUCTION IN PLANTS AND ANIMALS
Gestation and Embryonic Membranes
By the end of the lesson, the learner should be able to:
To define gestation period in humans. To identify extra-embryonic membranes. To describe amnion, chorion and allantois functions. To explain amniotic fluid importance.
Teacher exposition: 40-week gestation period comparison with other mammals. Detailed discussion: Formation and functions of amnion, chorion, allantois. Q/A: Amniotic fluid functions - protection, support, lubrication. Drawing embryonic membrane arrangement.
Gestation charts, Fetal development models, Drawing materials, Textbook
Certificate Biology Form 3, Pages 159-161
6 3
REPRODUCTION IN PLANTS AND ANIMALS
Placenta Structure and Functions
By the end of the lesson, the learner should be able to:
To describe placenta structure and formation. To explain maternal and fetal blood separation. To identify nutrient transfer and gas exchange functions. To discuss placental barrier limitations.
Detailed discussion: Placenta as temporary organ with dual tissue origin. Teacher exposition: Blood vessel arrangement and separation mechanisms. Discussion: Nutrient, oxygen transfer and harmful substance passage. Q/A: Placental protection and its limitations.
Placenta structure diagrams, Function charts, Drawing materials, Textbook
Certificate Biology Form 3, Pages 161-163
6 4-5
REPRODUCTION IN PLANTS AND ANIMALS
Pregnancy Hormones and Parturition
Male Reproductive System Structure and Functions
By the end of the lesson, the learner should be able to:
To identify hormones during pregnancy. To explain HCG, progesterone and oestrogen roles. To describe hormonal changes triggering birth. To explain the parturition process.
To draw and label male reproductive system. To identify testes, epididymis, vas deferens and accessory glands. To describe functions of each component. To explain scrotum function and temperature regulation.
Discussion: Hormone secretion patterns during pregnancy. Teacher exposition: HCG, progesterone, oestrogen functions and interactions. Detailed explanation: Hormonal triggers for birth and oxytocin role. Q/A: Uterine contractions, cervix dilation and delivery stages.
Drawing and labeling: Complete male reproductive system. Teacher demonstration using charts and models. Discussion: Functions of testes, epididymis, vas deferens, accessory glands. Q/A: Scrotum location and temperature regulation for sperm production.
Pregnancy hormone charts, Birth process diagrams, Hormone level graphs, Textbook
Male reproductive system charts, Drawing materials, Models if available, Textbook
Certificate Biology Form 3, Pages 163-165
Certificate Biology Form 3, Pages 164-166
7 1
REPRODUCTION IN PLANTS AND ANIMALS
Sperm Structure and Male Hormones
By the end of the lesson, the learner should be able to:
To draw and label spermatozoon structure. To explain head, middle piece and tail functions. To describe testosterone and FSH roles. To identify secondary sexual characteristics.
Drawing and labeling: Detailed sperm structure showing all components. Discussion: Sperm adaptations for fertilization and motility. Teacher exposition: Hormone control of sperm production and male development. Q/A: Testosterone effects and secondary sexual characteristics.
Sperm structure diagrams, Male hormone charts, Drawing materials, Textbook
Certificate Biology Form 3, Pages 166-167
7 2
REPRODUCTION IN PLANTS AND ANIMALS
HIV/AIDS - Causes and Transmission
By the end of the lesson, the learner should be able to:
To describe HIV virus and immune system effects. To explain AIDS development and symptoms. To identify HIV transmission modes. To discuss high-risk behaviors.
Detailed discussion: HIV virus structure and immune system destruction. Teacher exposition: AIDS development and opportunistic diseases. Discussion: Transmission modes - sexual, blood, mother-to-child. Q/A: High-risk behaviors and transmission prevention.
AIDS awareness charts, HIV transmission diagrams, Educational materials, Textbook
Certificate Biology Form 3, Pages 167-170
7 3
REPRODUCTION IN PLANTS AND ANIMALS
HIV/AIDS - Causes and Transmission
By the end of the lesson, the learner should be able to:
To describe HIV virus and immune system effects. To explain AIDS development and symptoms. To identify HIV transmission modes. To discuss high-risk behaviors.
Detailed discussion: HIV virus structure and immune system destruction. Teacher exposition: AIDS development and opportunistic diseases. Discussion: Transmission modes - sexual, blood, mother-to-child. Q/A: High-risk behaviors and transmission prevention.
AIDS awareness charts, HIV transmission diagrams, Educational materials, Textbook
Certificate Biology Form 3, Pages 167-170
7 4-5
REPRODUCTION IN PLANTS AND ANIMALS
AIDS Symptoms and Prevention
Bacterial STIs - Gonorrhea and Syphilis
By the end of the lesson, the learner should be able to:
To identify early and late AIDS symptoms. To describe opportunistic diseases. To explain AIDS prevention methods. To discuss social responsibility and behavior change.
To describe gonorrhea causes, symptoms and treatment. To explain syphilis stages and progression. To identify transmission modes for bacterial STIs. To discuss antibiotic treatment and prevention.
Discussion: Early AIDS symptoms and progression to full syndrome. Teacher exposition: Opportunistic diseases and their effects. Detailed explanation: Prevention strategies and behavior modification. Group discussion: Social responsibility and community health.
Detailed discussion: Gonorrhea bacterium and reproductive tract effects. Teacher exposition: Syphilis stages - primary, secondary, tertiary. Q/A: Transmission modes and treatment with antibiotics. Discussion: Prevention methods and partner responsibility.
AIDS symptom charts, Prevention posters, Case study materials, Textbook
STI information charts, Bacterial infection diagrams, Textbook
Certificate Biology Form 3, Pages 170-171
Certificate Biology Form 3, Pages 171-172
8

Midterm

9 1
REPRODUCTION IN PLANTS AND ANIMALS
Viral STIs and Other Infections
By the end of the lesson, the learner should be able to:
To describe genital herpes causes and symptoms. To explain hepatitis B transmission and effects. To identify trichomoniasis and other STIs. To emphasize prevention strategies for all STIs.
Discussion: Viral STIs and their incurable nature. Teacher exposition: Herpes simplex virus effects and dormancy. Q/A: Hepatitis B liver effects and vaccination. Discussion: Comprehensive STI prevention and faithful relationships.
Viral STI charts, Prevention strategy posters, Textbook
Certificate Biology Form 3, Page 172
9 2
GROWTH AND DEVELOPMENT
Introduction and Definitions
Measurement of Growth
By the end of the lesson, the learner should be able to:
To distinguish between growth and development. To define growth as permanent increase in size and weight. To explain development as structural changes and differentiation. To relate growth to cell division and tissue formation.
Q/A: Review reproduction concepts. Discussion: Definition of growth vs development. Teacher exposition: Cell division, differentiation and tissue formation. Q/A: Examples of growth and development in organisms. Discussion: Growth as characteristic of living organisms.
Charts showing growth and development, Textbook, Wall charts
Measuring instruments, Scales, Rulers, Calculators, Sample plants
Certificate Biology Form 3, Pages 178-179
9 3
GROWTH AND DEVELOPMENT
Patterns and Rate of Growth
Factors Controlling Plant Growth
By the end of the lesson, the learner should be able to:
To describe continuous and discontinuous growth patterns. To interpret growth curves for plants. To explain factors affecting growth rate. To calculate growth rates from given data.
Analysis of growth curves showing continuous vs discontinuous patterns. Teacher exposition: Growth phases A-B, B-C, C-D, D-E, E-F. Discussion: Environmental effects on growth patterns. Mathematical exercises: Calculating growth rates from data.
Growth curve charts, Graph paper, Calculators, Sample data sets
Environmental factor charts, Temperature scales, Light meters if available, Textbook
Certificate Biology Form 3, Pages 179-180
9 4-5
GROWTH AND DEVELOPMENT
Stages of Growth and Life Cycle
Seed Structure - Monocots and Dicots
Conditions for Germination
By the end of the lesson, the learner should be able to:
To describe stages from seed to maturity. To distinguish between annuals and perennials. To identify vegetative and reproductive phases. To explain germination, primary and secondary growth.
To identify conditions necessary for seed germination. To explain roles of water, oxygen and temperature in germination. To describe enzyme activation and food mobilization. To investigate scarification effects.
Discussion: Plant life cycle from seed to maturity. Teacher exposition: Vegetative vs reproductive growth phases. Q/A: Differences between annuals and perennials with examples. Overview of germination, primary and secondary growth stages.
Detailed discussion: Water absorption, enzyme activation, hydrolysis reactions. Teacher exposition: Oxygen requirements for respiration and ATP production. Q/A: Temperature effects on enzyme activity. Discussion: Scarification and testa permeability. Demonstration of vernalization concept.
Plant life cycle charts, Examples of annual and perennial plants, Textbook
Soaked bean and maize seeds, Hand lens, Scalpels, Drawing materials, Iodine solution
Germination apparatus, Seeds at different stages, Temperature monitoring equipment, Textbook
Certificate Biology Form 3, Pages 181-182
Certificate Biology Form 3, Pages 183-184
10 1
GROWTH AND DEVELOPMENT
Types of Germination
Germination Practical Investigation
By the end of the lesson, the learner should be able to:
To distinguish between epigeal and hypogeal germination. To describe hypocotyl and epicotyl elongation. To explain cotyledon behavior in each type. To give examples of plants showing each germination type.
Practical observation: Germinating bean and maize seeds at different stages. Teacher exposition: Epigeal germination - hypocotyl elongation, cotyledon emergence. Discussion: Hypogeal germination - epicotyl elongation, cotyledons remain underground. Drawing comparative diagrams of both types.
Germinating seeds at various stages, Drawing materials, Observation trays, Hand lens
Seeds, Petri dishes, Cotton wool, Measuring rulers, Data recording sheets, Clay pots
Certificate Biology Form 3, Pages 184-186
10 2
GROWTH AND DEVELOPMENT
Primary Growth and Meristems
By the end of the lesson, the learner should be able to:
To describe primary growth in plants. To identify apical meristems and their functions. To explain tissue development from meristems. To relate meristem activity to plant growth.
Discussion: Primary growth in seedlings and herbaceous plants. Teacher exposition: Apical meristem structure and cell characteristics. Q/A: Meristem cell division and differentiation processes. Drawing diagrams showing meristem distribution in plants.
Meristem distribution charts, Drawing materials, Microscope slides of meristems, Textbook
Certificate Biology Form 3, Pages 186-187
10 3
GROWTH AND DEVELOPMENT
Secondary Growth and Cambium Activity
By the end of the lesson, the learner should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support.
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
Certificate Biology Form 3, Pages 186-188
10 4-5
GROWTH AND DEVELOPMENT
Secondary Growth and Cambium Activity
Annual Rings and Plant Dormancy
By the end of the lesson, the learner should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support.
To explain annual ring formation in temperate trees. To describe factors causing plant dormancy. To identify dormancy in buds, seeds and organs. To explain dormancy advantages for plant survival.
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
Discussion: Annual growth seasons and ring formation. Teacher exposition: Environmental factors triggering dormancy. Q/A: Metabolic changes during dormancy periods. Discussion: Dormancy in bulbs, corms, rhizomes. Examples of seasonal dormancy in tropical plants.
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
Tree trunk cross-sections, Dormant plant organs, Charts, Textbook
Certificate Biology Form 3, Pages 186-188
Certificate Biology Form 3, Page 188
11 1
GROWTH AND DEVELOPMENT
Seed Dormancy and Breaking Mechanisms
By the end of the lesson, the learner should be able to:
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy.
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
Certificate Biology Form 3, Pages 188-189
11 2
GROWTH AND DEVELOPMENT
Plant Growth Substances - Auxins
By the end of the lesson, the learner should be able to:
To describe discovery of plant hormones by Fritz Went. To explain auxin functions in stems, leaves, roots and fruits. To identify IAA structure and translocation. To discuss practical applications of auxins.
Teacher exposition: Went's experiments with oat coleoptiles and auxin discovery. Discussion: Auxin effects in different plant organs. Q/A: Apical dominance and parthenocarpy. Practical applications: rooting powders, herbicides, fruit development.
Auxin experiment diagrams, Plant cuttings, Rooting powder demonstration, Textbook
Certificate Biology Form 3, Pages 189-192
11 3
GROWTH AND DEVELOPMENT
Gibberellins, Cytokinins and Other Hormones
By the end of the lesson, the learner should be able to:
To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects.
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering.
Plant hormone effect charts, Ripening fruits, Textbook
Certificate Biology Form 3, Pages 192-194
11 4-5
GROWTH AND DEVELOPMENT
Practical Applications of Plant Hormones
Animal Growth Patterns and Life Cycles
By the end of the lesson, the learner should be able to:
To explain commercial uses of plant hormones. To describe hormone applications in agriculture and horticulture. To identify hormone uses in crop production. To discuss economic benefits of hormone applications.
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups.
Discussion: Commercial applications of auxins in propagation. Teacher exposition: Gibberellins in brewing and dwarf plant treatment. Q/A: Hormone use in fruit production and weed control. Case studies: Economic benefits in agriculture and horticulture.
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
Hormone application examples, Agricultural product samples, Case study materials
Growth curve charts, Animal development examples, Graph paper, Textbook
Certificate Biology Form 3, Pages 191-194
Certificate Biology Form 3, Pages 193-194
12 1
GROWTH AND DEVELOPMENT
Complete Metamorphosis
By the end of the lesson, the learner should be able to:
To describe complete metamorphosis stages. To explain life cycle of housefly and butterfly. To identify egg, larva, pupa and adult stages. To discuss economic importance of insects with complete metamorphosis.
Detailed study: Housefly life cycle - egg, maggot, pupa, imago. Teacher exposition: Butterfly development - caterpillar, chrysalis, adult. Q/A: Structural and behavioral differences between stages. Discussion: Economic importance - pests, silk production.
Insect life cycle charts, Preserved specimens if available, Drawings, Textbook
Certificate Biology Form 3, Pages 195-198
12 2
GROWTH AND DEVELOPMENT
Complete Metamorphosis
By the end of the lesson, the learner should be able to:
To describe complete metamorphosis stages. To explain life cycle of housefly and butterfly. To identify egg, larva, pupa and adult stages. To discuss economic importance of insects with complete metamorphosis.
Detailed study: Housefly life cycle - egg, maggot, pupa, imago. Teacher exposition: Butterfly development - caterpillar, chrysalis, adult. Q/A: Structural and behavioral differences between stages. Discussion: Economic importance - pests, silk production.
Insect life cycle charts, Preserved specimens if available, Drawings, Textbook
Certificate Biology Form 3, Pages 195-198
12 3
GROWTH AND DEVELOPMENT
Incomplete Metamorphosis
By the end of the lesson, the learner should be able to:
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis.
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
Certificate Biology Form 3, Pages 198-199
12 4-5
GROWTH AND DEVELOPMENT
Hormonal Control of Growth in Animals
Growth Measurement Practical
By the end of the lesson, the learner should be able to:
To identify growth hormones in different animals. To explain human growth hormone from pituitary gland. To describe insect molting hormones - ecdysone and juvenile hormone. To explain thyroxine role in frog metamorphosis.
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences.
Discussion: Growth hormone control in mammals. Teacher exposition: Pituitary gland and human growth regulation. Q/A: Insect hormone balance - ecdysone and neotonin effects. Discussion: Thyroxine control of amphibian metamorphosis.
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
Hormone control charts, Animal development diagrams, Textbook
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
Certificate Biology Form 3, Page 199
Certificate Biology Form 3, Pages 201-202

Your Name Comes Here


Download

Feedback