If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
REVISION OF END YEAR EXAMS |
|||||||
| 2 | 1 |
GAS LAWS
|
Boyle's Law - Introduction and Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
State Boyle's law Explain Boyle's law using kinetic theory of matter Investigate the relationship between pressure and volume of a fixed mass of gas Plot graphs to illustrate Boyle's law |
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
|
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
|
KLB Secondary Chemistry Form 3, Pages 1-3
|
|
| 2 | 2 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications |
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
|
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables |
KLB Secondary Chemistry Form 3, Pages 3-4
|
|
| 2 | 3-4 |
GAS LAWS
|
Charles's Law - Introduction and Temperature Scales
Charles's Law - Experimental Investigation and Mathematical Expression Charles's Law - Numerical Problems and Applications Combined Gas Law and Standard Conditions Introduction to Diffusion - Experimental Investigation Rates of Diffusion - Comparative Study |
By the end of the
lesson, the learner
should be able to:
State Charles's law Convert temperatures between Celsius and Kelvin scales Define absolute zero temperature Explain the concept of absolute temperature Derive the combined gas law equation Apply PV/T = constant in problem solving Define standard temperature and pressure (s.t.p) Define room temperature and pressure (r.t.p) |
Teacher demonstration: Flask with colored water column experiment. Q/A: Observe volume changes with temperature. Exposition: Introduce Kelvin scale and absolute zero concept. Practice: Temperature conversions between °C and K. Discuss absolute zero and ideal gas concept.
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations. |
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures Scientific calculators, Temperature conversion charts, Application examples Scientific calculators, Combined law derivation charts, Standard conditions reference table KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 6-8
KLB Secondary Chemistry Form 3, Pages 12-14 |
|
| 2 | 5 |
GAS LAWS
|
Graham's Law of Diffusion - Theory and Mathematical Expression
|
By the end of the
lesson, the learner
should be able to:
State Graham's law of diffusion Express Graham's law mathematically Relate diffusion rate to molecular mass and density Explain the inverse relationship between rate and √molecular mass |
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses.
|
Graham's law charts, Molecular mass tables, Mathematical derivation displays
|
KLB Secondary Chemistry Form 3, Pages 18-20
|
|
| 3 | 1 |
GAS LAWS
|
Graham's Law - Numerical Applications and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Graham's law Calculate relative rates of diffusion Determine molecular masses from diffusion data Compare diffusion times for equal volumes of gases |
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
|
Scientific calculators, Worked example charts, Molecular mass reference tables
|
KLB Secondary Chemistry Form 3, Pages 20-22
|
|
| 3 | 2 |
THE MOLE
|
Relative Mass - Introduction and Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Define relative mass using practical examples Compare masses of different objects using a reference standard Explain the concept of relative atomic mass Identify carbon-12 as the reference standard |
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
|
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
|
KLB Secondary Chemistry Form 3, Pages 25-27
|
|
| 3 | 3-4 |
THE MOLE
|
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements Molecules and Moles - Diatomic Elements |
By the end of the
lesson, the learner
should be able to:
Define Avogadro's constant and its value Explain the concept of a mole as a counting unit Relate molar mass to relative atomic mass Calculate number of atoms in given masses of elements Distinguish between atoms and molecules Define relative molecular mass Calculate moles of molecules from given mass Determine number of atoms in molecular compounds |
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds. |
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles Molecular models, Charts showing diatomic elements, Scientific calculators |
KLB Secondary Chemistry Form 3, Pages 27-30
KLB Secondary Chemistry Form 3, Pages 29-30 |
|
| 3 | 5 |
THE MOLE
|
Empirical Formula - Experimental Determination
|
By the end of the
lesson, the learner
should be able to:
Define empirical formula Determine empirical formula from experimental data Calculate mole ratios from mass data Express results as simplest whole number ratios |
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
|
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 32-35
|
|
| 4 | 1 |
THE MOLE
|
Empirical Formula - Reduction Method
Empirical Formula - Percentage Composition Method |
By the end of the
lesson, the learner
should be able to:
Determine empirical formula using reduction reactions Calculate empirical formula from reduction data Apply reduction method to copper oxides Analyze experimental errors and sources |
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions.
|
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
Scientific calculators, Percentage composition charts, Worked example displays |
KLB Secondary Chemistry Form 3, Pages 35-37
|
|
| 4 | 2 |
THE MOLE
|
Molecular Formula - Determination from Empirical Formula
|
By the end of the
lesson, the learner
should be able to:
Define molecular formula Relate molecular formula to empirical formula Calculate molecular formula using molecular mass Apply the relationship (empirical formula)ₙ = molecular formula |
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
|
Scientific calculators, Molecular mass charts, Worked example displays
|
KLB Secondary Chemistry Form 3, Pages 38-40
|
|
| 4 | 3-4 |
THE MOLE
|
Molecular Formula - Combustion Analysis
Concentration and Molarity of Solutions Preparation of Molar Solutions |
By the end of the
lesson, the learner
should be able to:
Determine molecular formula from combustion data Calculate moles of products in combustion Relate product moles to reactant composition Apply combustion analysis to hydrocarbons Define concentration and molarity of solutions Calculate molarity from mass and volume data Convert between different concentration units Apply molarity calculations to various solutions |
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities. |
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
Scientific calculators, Molarity charts, Various salt samples for demonstration Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers |
KLB Secondary Chemistry Form 3, Pages 40-41
KLB Secondary Chemistry Form 3, Pages 41-43 |
|
| 4 | 5 |
THE MOLE
|
Dilution of Solutions
|
By the end of the
lesson, the learner
should be able to:
Define dilution process Apply dilution formula M₁V₁ = M₂V₂ Calculate concentrations after dilution Prepare dilute solutions from concentrated ones |
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
|
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 46-50
|
|
| 5 | 1 |
THE MOLE
|
Stoichiometry - Experimental Determination of Equations
|
By the end of the
lesson, the learner
should be able to:
Determine chemical equations from experimental data Calculate mole ratios from mass measurements Write balanced chemical equations Apply stoichiometry to displacement reactions |
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
|
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
|
KLB Secondary Chemistry Form 3, Pages 50-53
|
|
| 5 | 2 |
THE MOLE
|
Stoichiometry - Precipitation Reactions
|
By the end of the
lesson, the learner
should be able to:
Investigate stoichiometry of precipitation reactions Determine mole ratios from volume measurements Write ionic equations for precipitation Analyze limiting and excess reagents |
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
|
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
|
KLB Secondary Chemistry Form 3, Pages 53-56
|
|
| 5 | 3-4 |
THE MOLE
|
Stoichiometry - Gas Evolution Reactions
Volumetric Analysis - Introduction and Apparatus Titration - Acid-Base Neutralization |
By the end of the
lesson, the learner
should be able to:
Determine stoichiometry of gas-producing reactions Collect and measure gas volumes Calculate mole ratios involving gases Write equations for acid-carbonate reactions Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings |
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision. |
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks |
KLB Secondary Chemistry Form 3, Pages 56-58
KLB Secondary Chemistry Form 3, Pages 59-62 |
|
| 5 | 5 |
THE MOLE
|
Titration - Diprotic Acids
|
By the end of the
lesson, the learner
should be able to:
Investigate titrations involving diprotic acids Determine basicity of acids from titration data Compare volumes needed for mono- and diprotic acids Write equations for diprotic acid reactions |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
|
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
|
KLB Secondary Chemistry Form 3, Pages 62-65
|
|
| 6 | 1 |
THE MOLE
|
Standardization of Solutions
Back Titration Method |
By the end of the
lesson, the learner
should be able to:
Define standardization process Standardize HCl using Na₂CO₃ as primary standard Calculate accurate concentrations from titration data Understand importance of primary standards |
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
|
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks |
KLB Secondary Chemistry Form 3, Pages 65-67
|
|
| 6 | 2 |
THE MOLE
|
Redox Titrations - Principles
|
By the end of the
lesson, the learner
should be able to:
Explain principles of redox titrations Identify color changes in redox reactions Understand self-indicating nature of some redox reactions Write ionic equations for redox processes |
Teacher exposition: Redox titration principles. Demonstrate color changes: MnO₄⁻ (purple) → Mn²⁺ (colorless), Cr₂O₇²⁻ (orange) → Cr³⁺ (green). Discussion: Self-indicating reactions. Write half-equations and overall ionic equations.
|
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
|
KLB Secondary Chemistry Form 3, Pages 68-70
|
|
| 6 | 3-4 |
THE MOLE
|
Redox Titrations - KMnO₄ Standardization
Water of Crystallization Determination Atomicity and Molar Gas Volume |
By the end of the
lesson, the learner
should be able to:
Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations Determine water of crystallization in hydrated salts Use redox titration to find formula of hydrated salt Calculate value of 'n' in crystallization formulas Apply analytical data to determine complete formulas |
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values. |
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus |
KLB Secondary Chemistry Form 3, Pages 70-72
KLB Secondary Chemistry Form 3, Pages 72-73 |
|
| 6 | 5 |
THE MOLE
|
Combining Volumes of Gases - Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Investigate Gay-Lussac's law experimentally Measure combining volumes of reacting gases Determine simple whole number ratios Write equations from volume relationships |
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
|
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
|
KLB Secondary Chemistry Form 3, Pages 75-77
|
|
| 7 |
MIDTERM EXAMS |
|||||||
| 8 |
MIDTERM BREAK |
|||||||
| 9 | 1 |
THE MOLE
|
Gas Laws and Chemical Equations
|
By the end of the
lesson, the learner
should be able to:
Apply Avogadro's law to chemical reactions Use volume ratios to determine chemical equations Calculate product volumes from reactant volumes Solve problems involving gas stoichiometry |
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
|
Scientific calculators, Gas law charts, Volume ratio examples
|
KLB Secondary Chemistry Form 3, Pages 77-79
|
|
| 9 | 2 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
|
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 9 | 3-4 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil Cracking of Alkanes - Thermal and Catalytic Methods |
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production. |
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration |
KLB Secondary Chemistry Form 3, Pages 86-87
KLB Secondary Chemistry Form 3, Pages 89-90 |
|
| 9 | 5 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
|
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
|
Alkane series chart, Molecular formula worksheets, Periodic table
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 10 | 1 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers |
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
|
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets |
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 10 | 2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 10 | 3-4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
Physical Properties of Alkanes Chemical Properties of Alkanes - Combustion and Substitution |
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents. |
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials Molecular models, Halogenation reaction charts, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 94-96
KLB Secondary Chemistry Form 3, Pages 96-97 |
|
| 10 | 5 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
|
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
|
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
| 11 | 1 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
|
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
|
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
| 11 | 2 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
| 11 | 3-4 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size. |
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102
KLB Secondary Chemistry Form 3, Pages 102-104 |
|
| 11 | 5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
|
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
|
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 105-107
|
|
| 12 | 1 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
Tests for Alkenes and Uses |
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts |
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
| 12 | 2 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
|
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
|
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
|
KLB Secondary Chemistry Form 3, Pages 109-110
|
|
| 12 | 3-4 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne Physical and Chemical Properties of Alkynes |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition. |
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions Physical properties charts, Comparison tables, Combustion equation examples |
KLB Secondary Chemistry Form 3, Pages 110-111
KLB Secondary Chemistry Form 3, Pages 111-112 |
|
| 12 | 5 |
ORGANIC CHEMISTRY I
|
Addition Reactions of Alkynes and Chemical Tests
Uses of Alkynes and Industrial Applications |
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
|
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples |
KLB Secondary Chemistry Form 3, Pages 113-115
|
|
| 13 |
END TERM EXAMS |
|||||||
Your Name Comes Here