If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
REVISION OF END YEAR EXAMS |
|||||||
| 2 | 1 |
Quadratic Expressions and Equations
|
Factorisation of quadratic expressions
|
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expressions Write the perfect squares Apply factorization methods to solve problems |
Q/A on revision of linear expressions
Discussions on quadratic expression patterns Solving problems using factorization Demonstrations on factorization techniques Explaining step-by-step methods |
Calculators, charts showing factorization patterns
|
KLB Mathematics Book Three Pg 1
|
|
| 2 | 2 |
Quadratic Expressions and Equations
|
Factorisation of quadratic expressions
Completing squares Completing squares Solving quadratic expressions by completing square |
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expressions using different methods Identify common factors in expressions Apply grouping method to factorize |
Q/A on previous lesson concepts
Discussions on advanced factorization Solving complex factorization problems Demonstrations of grouping methods Explaining various factorization techniques |
Calculators, factorization method charts
Calculators, perfect square charts Calculators, vertex form examples Calculators, equation solving guides |
KLB Mathematics Book Three Pg 1-2
|
|
| 2 | 3 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by factorization
The quadratic formula The quadratic formula Formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by factorization Apply zero product property Choose appropriate factorization method |
Q/A on factorization techniques
Discussions on solving strategies Solving equations using factorization Demonstrations of zero product rule Explaining method selection |
Calculators, method selection charts
Calculators, formula derivation charts Calculators, discriminant interpretation guides Calculators, word problem templates |
KLB Mathematics Book Three Pg 7
|
|
| 2 | 4 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw a table of the quadratic functions Plot coordinates accurately Construct systematic value tables |
Q/A on coordinate geometry basics
Discussions on table construction Solving plotting problems Demonstrations of systematic plotting Explaining table creation methods |
Graph papers, calculators, plotting guides
|
KLB Mathematics Book Three Pg 12-15
|
|
| 2 | 5 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
Graphical solutions of quadratic equation |
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
|
|
| 2 | 6 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
Graphical solutions of simultaneous equations |
By the end of the
lesson, the learner
should be able to:
Solve quadratic equations using the graphs Verify algebraic solutions graphically Estimate solutions from graphs |
Q/A on solution verification
Discussions on estimation techniques Solving complex graphical problems Demonstrations of verification methods Explaining accuracy in estimation |
Graph papers, calculators, estimation guides
Graph papers, calculators, intersection analysis guides |
KLB Mathematics Book Three Pg 17-19
|
|
| 2 | 7 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 24-26
|
|
| 3 | 1 |
Approximations and Errors
|
Approximation
Estimation |
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
Calculators, estimation guides |
KLB Mathematics Book Three Pg 29-30
|
|
| 3 | 2 |
Approximations and Errors
|
Accuracy and errors
Percentage error |
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
Calculators, percentage error worksheets |
KLB Mathematics Book Three Pg 31-32
|
|
| 3 | 3 |
Approximations and Errors
|
Rounding off error and truncation error
Propagation of errors |
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
Calculators, error propagation guides |
KLB Mathematics Book Three Pg 34
|
|
| 3 | 4 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Apply error propagation to complex problems Verify error calculations |
Q/A on propagation mastery
Discussions on complex error scenarios Solving advanced propagation problems Demonstrations of verification methods Explaining error validation |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 35-36
|
|
| 3 | 5 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
Calculators, method comparison charts |
KLB Mathematics Book Three Pg 36-37
|
|
| 3 | 6 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Calculate errors in quotients Apply division error rules |
Q/A on division error concepts
Discussions on quotient error calculation Solving division error problems Demonstrations of division error methods Explaining division error principles |
Calculators, division error worksheets
Calculators, verification guides |
KLB Mathematics Book Three Pg 37-38
|
|
| 3 | 7 |
Approximations and Errors
Trigonometry (II) |
Word problems
The unit circle |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
Calculators, protractors, rulers, pair of compasses |
KLB Mathematics Book Three Pg 39-40
|
|
| 4 | 1 |
Trigonometry (II)
|
The unit circle
Trigonometric ratios of angles greater than 90° |
By the end of the
lesson, the learner
should be able to:
Solve problems using the unit circle Apply unit circle to find trigonometric values Use unit circle for angle measurement |
Q/A on unit circle mastery
Discussions on practical applications Solving trigonometric problems Demonstrations of value finding Explaining angle relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 43-44
|
|
| 4 | 2 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Solve problems with angles in different quadrants Apply ASTC rule for sign determination |
Q/A on quadrant properties
Discussions on sign conventions Solving multi-quadrant problems Demonstrations of ASTC rule Explaining trigonometric signs |
Calculators, quadrant charts
Geoboards, graph books, calculators |
KLB Mathematics Book Three Pg 46-47
|
|
| 4 | 3 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 360°
Use of mathematical tables |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles greater than 360° Apply coterminal angle concepts Reduce angles to standard position |
Q/A on angle reduction concepts
Discussions on coterminal angles Solving extended angle problems Demonstrations of angle reduction Explaining periodic properties |
Geoboards, graph books, calculators
Mathematical tables, calculators |
KLB Mathematics Book Three Pg 49-51
|
|
| 4 | 4 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find tan Apply tables for all trigonometric functions Compare table and calculator results |
Q/A on tangent table usage
Discussions on function relationships Solving comprehensive table problems Demonstrations of result verification Explaining table limitations |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 55-56
|
|
| 4 | 5 |
Trigonometry (II)
|
Use of calculators
Radian measure |
By the end of the
lesson, the learner
should be able to:
Use calculators to find sine, cosine and tan Apply calculator functions for trigonometry Verify calculator accuracy |
Q/A on calculator trigonometric functions
Discussions on calculator modes Solving problems using calculators Demonstrations of function keys Explaining degree vs radian modes |
Calculators, function guides
Calculators, conversion charts |
KLB Mathematics Book Three Pg 56-58
|
|
| 4 | 6 |
Trigonometry (II)
|
Simple trigonometric graphs
Graphs of cosines |
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
| 4 | 7 |
Trigonometry (II)
|
Graphs of tan
The sine rule |
By the end of the
lesson, the learner
should be able to:
Draw tables for tan of values Plot graphs of tan functions Identify asymptotes and discontinuities |
Q/A on tangent behavior
Discussions on function domains Solving tangent graphing problems Demonstrations of asymptote identification Explaining discontinuous functions |
Calculators, graph papers, plotting guides
Calculators, triangle worksheets |
KLB Mathematics Book Three Pg 64-65
|
|
| 5 | 1 |
Trigonometry (II)
|
Cosine rule
Problem solving |
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples |
KLB Mathematics Book Three Pg 71-75
|
|
| 5 | 2 |
Surds
|
Rational and irrational numbers
Order of surds and simplification |
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
Calculators, surd order examples |
KLB Mathematics Book Three Pg 78
|
|
| 5 | 3 |
Surds
|
Simplification of surds practice
Addition of surds |
By the end of the
lesson, the learner
should be able to:
Simplify surds using factorization Express surds in simplest form Apply systematic simplification methods |
Q/A on factorization techniques
Discussions on factor identification Solving extensive simplification problems Demonstrations of step-by-step methods Explaining perfect square extraction |
Calculators, factor trees, simplification worksheets
Calculators, addition rule charts |
KLB Mathematics Book Three Pg 79-80
|
|
| 5 | 4 |
Surds
|
Subtraction of surds
|
By the end of the
lesson, the learner
should be able to:
Subtract surds with like terms Apply subtraction rules to surds Simplify surd subtraction expressions |
Q/A on subtraction principles
Discussions on surd subtraction methods Solving subtraction problems Demonstrations of systematic approaches Explaining subtraction verification |
Calculators, subtraction worksheets
|
KLB Mathematics Book Three Pg 80
|
|
| 5 | 5 |
Surds
|
Multiplication of surds
Division of surds |
By the end of the
lesson, the learner
should be able to:
Multiply surds of the same order Apply multiplication rules to surds Simplify products of surds |
Q/A on multiplication concepts
Discussions on surd multiplication laws Solving multiplication problems Demonstrations of product simplification Explaining multiplication principles |
Calculators, multiplication rule guides
Calculators, division worksheets |
KLB Mathematics Book Three Pg 80-82
|
|
| 5 | 6 |
Surds
|
Rationalizing the denominator
Advanced rationalization techniques |
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
Calculators, advanced technique sheets |
KLB Mathematics Book Three Pg 85-87
|
|
| 5 | 7 |
Further Logarithms
|
Introduction
Laws of logarithms |
By the end of the
lesson, the learner
should be able to:
Use calculators to find the logarithm of numbers Understand logarithmic notation and concepts Apply basic logarithmic principles |
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties Solving basic logarithm problems Demonstrations of calculator usage Explaining logarithm-exponential connections |
Calculators, logarithm definition charts
Calculators, logarithm law charts |
KLB Mathematics Book Three Pg 89
|
|
| 6 | 1 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Apply advanced logarithmic laws Combine multiple laws in calculations |
Q/A on law mastery and applications
Discussions on power and root laws Solving complex law-based problems Demonstrations of combined law usage Explaining advanced law techniques |
Calculators, advanced law worksheets
Calculators, challenging problem sets |
KLB Mathematics Book Three Pg 90-93
|
|
| 6 | 2 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Apply algebraic methods to logarithmic equations Verify solutions of logarithmic equations |
Q/A on equation-solving techniques
Discussions on logarithmic equation types Solving basic logarithmic equations Demonstrations of solution methods Explaining verification techniques |
Calculators, equation-solving guides
Calculators, advanced equation worksheets |
KLB Mathematics Book Three Pg 93-95
|
|
| 6 | 3 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to numerical computations Use logarithms for complex calculations |
Q/A on computational applications
Discussions on numerical problem-solving Solving computation-based problems Demonstrations of logarithmic calculations Explaining computational advantages |
Calculators, computation worksheets
Calculators, intermediate problem sets |
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 4 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Master advanced logarithmic computations Apply logarithms to complex mathematical scenarios |
Q/A on advanced computational mastery
Discussions on complex calculation strategies Solving advanced computation problems Demonstrations of sophisticated methods Explaining optimal computational approaches |
Calculators, advanced computation guides
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 5 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to computational applications Integrate logarithmic concepts systematically |
Q/A on integrated problem-solving
Discussions on application strategies Solving comprehensive computational problems Demonstrations of integrated approaches Explaining systematic problem-solving |
Calculators, comprehensive problem sets
Calculators, real-world application examples |
KLB Mathematics Book Three Pg 97
|
|
| 6 | 6 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
Calculators, real-world problem sets |
KLB Mathematics Book Three Pg 98-99
|
|
| 6 | 7 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Apply compound interest formula Understand compounding concepts |
Q/A on compound interest principles
Discussions on compounding frequency Solving basic compound interest problems Demonstrations of compound calculations Explaining compounding effects |
Calculators, compound interest tables
Calculators, comparison worksheets |
KLB Mathematics Book Three Pg 102-106
|
|
| 7 |
MIDTERM EXAMS |
|||||||
| 8 |
MIDTERM BREAK |
|||||||
| 9 | 1 |
Commercial Arithmetic
|
Appreciation
Depreciation |
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
Calculators, depreciation charts |
KLB Mathematics Book Three Pg 108
|
|
| 9 | 2 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Calculate hire purchase terms Understand hire purchase concepts |
Q/A on hire purchase principles
Discussions on installment buying Solving basic hire purchase problems Demonstrations of payment calculations Explaining hire purchase benefits |
Calculators, hire purchase examples
Calculators, complex hire purchase worksheets |
KLB Mathematics Book Three Pg 110-112
|
|
| 9 | 3 |
Commercial Arithmetic
Circles: Chords and Tangents |
Income tax and P.A.Y.E
Length of an arc |
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
Geometrical set, calculators |
KLB Mathematics Book Three Pg 112-117
|
|
| 9 | 4 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
| 9 | 5 |
Circles: Chords and Tangents
|
Chords
Parallel chords |
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
| 9 | 6 |
Circles: Chords and Tangents
|
Equal chords
Intersecting chords |
By the end of the
lesson, the learner
should be able to:
Find the length of equal chords Apply equal chord theorems Solve equal chord problems |
Q/A on equal chord properties
Discussions on chord equality conditions Solving equal chord problems Demonstrations of proof techniques Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 131-132
|
|
| 9 | 7 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
| 10 | 1 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
| 10 | 2 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
Tangent properties |
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
| 10 | 3 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
| 10 | 4 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
| 10 | 5 |
Circles: Chords and Tangents
|
Contact of circles
Circle contact |
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand external contact properties Compare internal and external contact |
Q/A on external contact concepts
Discussions on contact type differences Solving external contact problems Demonstrations of contact analysis Explaining contact applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 153-154
|
|
| 10 | 6 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
| 10 | 7 |
Circles: Chords and Tangents
|
Circumscribed circle
Escribed circles |
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
| 11 | 1 |
Circles: Chords and Tangents
|
Centroid
Orthocenter |
By the end of the
lesson, the learner
should be able to:
Construct centroid Find centroid properties Apply centroid concepts |
Q/A on centroid definition and properties
Discussions on centroid construction Solving centroid problems Demonstrations of construction techniques Explaining centroid applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 166
|
|
| 11 | 2 |
Circles: Chords and Tangents
Matrices Matrices |
Circle and triangle relationships
Introduction and real-life applications Order of a matrix and elements |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books Chalk and blackboard, ruled exercise books, class register |
KLB Mathematics Book Three Pg 164-167
|
|
| 11 | 3 |
Matrices
|
Square matrices, row and column matrices
Addition of matrices Subtraction of matrices Combined addition and subtraction |
By the end of the
lesson, the learner
should be able to:
Classify matrices by their dimensions Identify square, row, and column matrices Understand zero and null matrices Apply matrix equality conditions |
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns Solving matrix identification using cutout papers Demonstrations using classroom objects arrangement Explaining matrix comparison using simple examples |
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books Chalk and blackboard, exercise books, number cards made from cardboard Chalk and blackboard, exercise books, locally made operation cards |
KLB Mathematics Book Three Pg 169-170
|
|
| 11 | 4 |
Matrices
|
Scalar multiplication
Introduction to matrix multiplication Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply matrices by scalar quantities Apply scalar multiplication rules Understand the effect of scalar multiplication Solve scalar multiplication problems |
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts Solving scalar problems using repeated addition Demonstrations using groups of objects Explaining scalar effects using enlargement concepts |
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-175
|
|
| 11 | 5 |
Matrices
|
Matrix multiplication (larger matrices)
Properties of matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards |
KLB Mathematics Book Three Pg 176-179
|
|
| 11 | 6 |
Matrices
|
Real-world matrix multiplication applications
Identity matrix |
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper |
KLB Mathematics Book Three Pg 176-179
|
|
| 11 | 7 |
Matrices
|
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory |
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples |
KLB Mathematics Book Three Pg 183
|
|
| 12 | 1 |
Matrices
|
Inverse of 2×2 matrices - practice
|
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
|
KLB Mathematics Book Three Pg 185-187
|
|
| 12 | 2 |
Matrices
|
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices |
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples |
KLB Mathematics Book Three Pg 188-189
|
|
| 12 | 3 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
| 12 | 4 |
Matrices
|
Transpose of matrices
Matrix equation solving |
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples |
KLB Mathematics Book Three Pg 170-174
|
|
| 12 | 5 |
Formulae and Variations
|
Introduction to formulae
Subject of a formula - basic cases |
By the end of the
lesson, the learner
should be able to:
Define formulae and identify formula components Recognize formulae in everyday contexts Understand the relationship between variables Appreciate the importance of formulae in mathematics |
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae Analyzing distance-time relationships using walking examples Demonstrations using perimeter and area calculations Explaining formula notation using simple examples |
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
| 12 | 6 |
Formulae and Variations
|
Subject of a formula - intermediate cases
Subject of a formula - advanced cases |
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
| 12 | 7 |
Formulae and Variations
|
Applications of formula manipulation
Introduction to variation Direct variation - introduction |
By the end of the
lesson, the learner
should be able to:
Apply formula rearrangement to practical problems Solve real-world problems using formula manipulation Calculate unknown quantities in various contexts Interpret results in meaningful situations |
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building Solving application problems using formula rearrangement Demonstrations using construction and farming scenarios Explaining practical interpretation using community examples |
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books Chalk and blackboard, beans or stones for counting, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
| 13 |
END TERM EXAMS |
|||||||
Your Name Comes Here