Home






SCHEME OF WORK
Mathematics
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

REVISION OF END YEAR EXAMS

2 1
Quadratic Expressions and Equations
Factorisation of quadratic expressions
By the end of the lesson, the learner should be able to:
Factorize quadratic expressions
Write the perfect squares
Apply factorization methods to solve problems
Q/A on revision of linear expressions
Discussions on quadratic expression patterns
Solving problems using factorization
Demonstrations on factorization techniques
Explaining step-by-step methods
Calculators, charts showing factorization patterns
KLB Mathematics Book Three Pg 1
2 2
Quadratic Expressions and Equations
Factorisation of quadratic expressions
Completing squares
Completing squares
Solving quadratic expressions by completing square
By the end of the lesson, the learner should be able to:
Factorize quadratic expressions using different methods
Identify common factors in expressions
Apply grouping method to factorize
Q/A on previous lesson concepts
Discussions on advanced factorization
Solving complex factorization problems
Demonstrations of grouping methods
Explaining various factorization techniques
Calculators, factorization method charts
Calculators, perfect square charts
Calculators, vertex form examples
Calculators, equation solving guides
KLB Mathematics Book Three Pg 1-2
2 3
Quadratic Expressions and Equations
Solving quadratic expressions by factorization
The quadratic formula
The quadratic formula
Formation of quadratic equations
By the end of the lesson, the learner should be able to:
Solve quadratic expressions by factorization
Apply zero product property
Choose appropriate factorization method
Q/A on factorization techniques
Discussions on solving strategies
Solving equations using factorization
Demonstrations of zero product rule
Explaining method selection
Calculators, method selection charts
Calculators, formula derivation charts
Calculators, discriminant interpretation guides
Calculators, word problem templates
KLB Mathematics Book Three Pg 7
2 4
Quadratic Expressions and Equations
Graphs of quadratic functions
By the end of the lesson, the learner should be able to:
Draw a table of the quadratic functions
Plot coordinates accurately
Construct systematic value tables
Q/A on coordinate geometry basics
Discussions on table construction
Solving plotting problems
Demonstrations of systematic plotting
Explaining table creation methods
Graph papers, calculators, plotting guides
KLB Mathematics Book Three Pg 12-15
2 5
Quadratic Expressions and Equations
Graphs of quadratic functions
Graphical solutions of quadratic equation
By the end of the lesson, the learner should be able to:
Draw graphs of quadratic functions
Identify vertex and axis of symmetry
Find intercepts from graphs
Q/A on graph plotting techniques
Discussions on graph features
Solving graphing problems
Demonstrations of feature identification
Explaining graph properties
Graph papers, calculators, rulers
KLB Mathematics Book Three Pg 12-15
2 6
Quadratic Expressions and Equations
Graphical solutions of quadratic equation
Graphical solutions of simultaneous equations
By the end of the lesson, the learner should be able to:
Solve quadratic equations using the graphs
Verify algebraic solutions graphically
Estimate solutions from graphs
Q/A on solution verification
Discussions on estimation techniques
Solving complex graphical problems
Demonstrations of verification methods
Explaining accuracy in estimation
Graph papers, calculators, estimation guides
Graph papers, calculators, intersection analysis guides
KLB Mathematics Book Three Pg 17-19
2 7
Approximations and Errors
Computing using calculators
By the end of the lesson, the learner should be able to:
Solve basic operations using calculators
Use calculator functions effectively
Apply calculator to mathematical computations
Q/A on calculator familiarity
Discussions on calculator operations
Solving basic arithmetic problems
Demonstrations of calculator functions
Explaining proper calculator usage
Calculators, operation guides
Calculators, verification worksheets
KLB Mathematics Book Three Pg 24-26
3 1
Approximations and Errors
Approximation
Estimation
By the end of the lesson, the learner should be able to:
Approximate values by rounding off
Round numbers to specified decimal places
Apply rounding rules correctly
Q/A on rounding concepts
Discussions on rounding techniques
Solving rounding problems
Demonstrations of rounding methods
Explaining rounding rules and applications
Calculators, rounding charts
Calculators, estimation guides
KLB Mathematics Book Three Pg 29-30
3 2
Approximations and Errors
Accuracy and errors
Percentage error
By the end of the lesson, the learner should be able to:
Find the absolute error
Calculate relative error
Distinguish between different error types
Q/A on error concepts
Discussions on error calculations
Solving absolute and relative error problems
Demonstrations of error computation
Explaining error significance
Calculators, error calculation sheets
Calculators, percentage error worksheets
KLB Mathematics Book Three Pg 31-32
3 3
Approximations and Errors
Rounding off error and truncation error
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the rounding off error
Calculate truncation error
Compare rounding and truncation errors
Q/A on error types
Discussions on error sources
Solving rounding and truncation error problems
Demonstrations of error comparison
Explaining error analysis
Calculators, error comparison charts
Calculators, error propagation guides
KLB Mathematics Book Three Pg 34
3 4
Approximations and Errors
Propagation of errors
By the end of the lesson, the learner should be able to:
Find the propagation of errors in addition and subtraction
Apply error propagation to complex problems
Verify error calculations
Q/A on propagation mastery
Discussions on complex error scenarios
Solving advanced propagation problems
Demonstrations of verification methods
Explaining error validation
Calculators, verification worksheets
KLB Mathematics Book Three Pg 35-36
3 5
Approximations and Errors
Propagation of errors in multiplication
By the end of the lesson, the learner should be able to:
Find the propagation of errors in multiplication
Calculate relative errors in products
Apply multiplication error rules
Q/A on multiplication error concepts
Discussions on product error calculation
Solving multiplication error problems
Demonstrations of relative error computation
Explaining multiplication error principles
Calculators, multiplication error guides
Calculators, method comparison charts
KLB Mathematics Book Three Pg 36-37
3 6
Approximations and Errors
Propagation of errors in division
By the end of the lesson, the learner should be able to:
Find the propagation of errors in division
Calculate errors in quotients
Apply division error rules
Q/A on division error concepts
Discussions on quotient error calculation
Solving division error problems
Demonstrations of division error methods
Explaining division error principles
Calculators, division error worksheets
Calculators, verification guides
KLB Mathematics Book Three Pg 37-38
3 7
Approximations and Errors
Trigonometry (II)
Word problems
The unit circle
By the end of the lesson, the learner should be able to:
Find the propagation of errors of a word problem
Apply error analysis to real-world situations
Solve comprehensive error problems
Q/A on chapter consolidation
Discussions on real-world applications
Solving comprehensive word problems
Demonstrations of problem-solving strategies
Explaining practical error analysis
Calculators, word problem sets, comprehensive review sheets
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 39-40
4 1
Trigonometry (II)
The unit circle
Trigonometric ratios of angles greater than 90°
By the end of the lesson, the learner should be able to:
Solve problems using the unit circle
Apply unit circle to find trigonometric values
Use unit circle for angle measurement
Q/A on unit circle mastery
Discussions on practical applications
Solving trigonometric problems
Demonstrations of value finding
Explaining angle relationships
Calculators, protractors, rulers, pair of compasses
KLB Mathematics Book Three Pg 43-44
4 2
Trigonometry (II)
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles
Solve problems with angles in different quadrants
Apply ASTC rule for sign determination
Q/A on quadrant properties
Discussions on sign conventions
Solving multi-quadrant problems
Demonstrations of ASTC rule
Explaining trigonometric signs
Calculators, quadrant charts
Geoboards, graph books, calculators
KLB Mathematics Book Three Pg 46-47
4 3
Trigonometry (II)
Trigonometric ratios of angles greater than 360°
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Find the trigonometric values of angles greater than 360°
Apply coterminal angle concepts
Reduce angles to standard position
Q/A on angle reduction concepts
Discussions on coterminal angles
Solving extended angle problems
Demonstrations of angle reduction
Explaining periodic properties
Geoboards, graph books, calculators
Mathematical tables, calculators
KLB Mathematics Book Three Pg 49-51
4 4
Trigonometry (II)
Use of mathematical tables
By the end of the lesson, the learner should be able to:
Use mathematical tables to find tan
Apply tables for all trigonometric functions
Compare table and calculator results
Q/A on tangent table usage
Discussions on function relationships
Solving comprehensive table problems
Demonstrations of result verification
Explaining table limitations
Mathematical tables, calculators
KLB Mathematics Book Three Pg 55-56
4 5
Trigonometry (II)
Use of calculators
Radian measure
By the end of the lesson, the learner should be able to:
Use calculators to find sine, cosine and tan
Apply calculator functions for trigonometry
Verify calculator accuracy
Q/A on calculator trigonometric functions
Discussions on calculator modes
Solving problems using calculators
Demonstrations of function keys
Explaining degree vs radian modes
Calculators, function guides
Calculators, conversion charts
KLB Mathematics Book Three Pg 56-58
4 6
Trigonometry (II)
Simple trigonometric graphs
Graphs of cosines
By the end of the lesson, the learner should be able to:
Draw tables for sine of values
Plot graphs of sine functions
Identify sine graph properties
Q/A on coordinate graphing
Discussions on periodic functions
Solving graphing problems
Demonstrations of sine plotting
Explaining graph characteristics
Calculators, graph papers, plotting guides
KLB Mathematics Book Three Pg 62-63
4 7
Trigonometry (II)
Graphs of tan
The sine rule
By the end of the lesson, the learner should be able to:
Draw tables for tan of values
Plot graphs of tan functions
Identify asymptotes and discontinuities
Q/A on tangent behavior
Discussions on function domains
Solving tangent graphing problems
Demonstrations of asymptote identification
Explaining discontinuous functions
Calculators, graph papers, plotting guides
Calculators, triangle worksheets
KLB Mathematics Book Three Pg 64-65
5 1
Trigonometry (II)
Cosine rule
Problem solving
By the end of the lesson, the learner should be able to:
State the cosine rule
Apply cosine rule to find solution of triangles
Choose appropriate rule for triangle solving
Q/A on cosine rule concepts
Discussions on rule selection
Solving complex triangle problems
Demonstrations of cosine rule
Explaining when to use each rule
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples
KLB Mathematics Book Three Pg 71-75
5 2
Surds
Rational and irrational numbers
Order of surds and simplification
By the end of the lesson, the learner should be able to:
Classify numbers as rational and irrational numbers
Identify rational and irrational numbers
Distinguish between rational and irrational forms
Q/A on number classification concepts
Discussions on rational vs irrational properties
Solving classification problems
Demonstrations of number identification
Explaining decimal representations
Calculators, number classification charts
Calculators, surd order examples
KLB Mathematics Book Three Pg 78
5 3
Surds
Simplification of surds practice
Addition of surds
By the end of the lesson, the learner should be able to:
Simplify surds using factorization
Express surds in simplest form
Apply systematic simplification methods
Q/A on factorization techniques
Discussions on factor identification
Solving extensive simplification problems
Demonstrations of step-by-step methods
Explaining perfect square extraction
Calculators, factor trees, simplification worksheets
Calculators, addition rule charts
KLB Mathematics Book Three Pg 79-80
5 4
Surds
Subtraction of surds
By the end of the lesson, the learner should be able to:
Subtract surds with like terms
Apply subtraction rules to surds
Simplify surd subtraction expressions
Q/A on subtraction principles
Discussions on surd subtraction methods
Solving subtraction problems
Demonstrations of systematic approaches
Explaining subtraction verification
Calculators, subtraction worksheets
KLB Mathematics Book Three Pg 80
5 5
Surds
Multiplication of surds
Division of surds
By the end of the lesson, the learner should be able to:
Multiply surds of the same order
Apply multiplication rules to surds
Simplify products of surds
Q/A on multiplication concepts
Discussions on surd multiplication laws
Solving multiplication problems
Demonstrations of product simplification
Explaining multiplication principles
Calculators, multiplication rule guides
Calculators, division worksheets
KLB Mathematics Book Three Pg 80-82
5 6
Surds
Rationalizing the denominator
Advanced rationalization techniques
By the end of the lesson, the learner should be able to:
Rationalize the denominator of fractions
Apply rationalization techniques
Simplify expressions with surd denominators
Q/A on rationalization concepts
Discussions on denominator clearing
Solving rationalization problems
Demonstrations of conjugate methods
Explaining rationalization importance
Calculators, rationalization guides
Calculators, advanced technique sheets
KLB Mathematics Book Three Pg 85-87
5 7
Further Logarithms
Introduction
Laws of logarithms
By the end of the lesson, the learner should be able to:
Use calculators to find the logarithm of numbers
Understand logarithmic notation and concepts
Apply basic logarithmic principles
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties
Solving basic logarithm problems
Demonstrations of calculator usage
Explaining logarithm-exponential connections
Calculators, logarithm definition charts
Calculators, logarithm law charts
KLB Mathematics Book Three Pg 89
6 1
Further Logarithms
Laws of logarithms
By the end of the lesson, the learner should be able to:
Use laws of logarithms to solve problems
Apply advanced logarithmic laws
Combine multiple laws in calculations
Q/A on law mastery and applications
Discussions on power and root laws
Solving complex law-based problems
Demonstrations of combined law usage
Explaining advanced law techniques
Calculators, advanced law worksheets
Calculators, challenging problem sets
KLB Mathematics Book Three Pg 90-93
6 2
Further Logarithms
Logarithmic equations and expressions
By the end of the lesson, the learner should be able to:
Solve the logarithmic equations and expressions
Apply algebraic methods to logarithmic equations
Verify solutions of logarithmic equations
Q/A on equation-solving techniques
Discussions on logarithmic equation types
Solving basic logarithmic equations
Demonstrations of solution methods
Explaining verification techniques
Calculators, equation-solving guides
Calculators, advanced equation worksheets
KLB Mathematics Book Three Pg 93-95
6 3
Further Logarithms
Further computation using logarithms
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithms to numerical computations
Use logarithms for complex calculations
Q/A on computational applications
Discussions on numerical problem-solving
Solving computation-based problems
Demonstrations of logarithmic calculations
Explaining computational advantages
Calculators, computation worksheets
Calculators, intermediate problem sets
KLB Mathematics Book Three Pg 95-96
6 4
Further Logarithms
Further computation using logarithms
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Master advanced logarithmic computations
Apply logarithms to complex mathematical scenarios
Q/A on advanced computational mastery
Discussions on complex calculation strategies
Solving advanced computation problems
Demonstrations of sophisticated methods
Explaining optimal computational approaches
Calculators, advanced computation guides
KLB Mathematics Book Three Pg 95-96
6 5
Further Logarithms
Problem solving
By the end of the lesson, the learner should be able to:
Solve problems involving logarithms
Apply logarithms to computational applications
Integrate logarithmic concepts systematically
Q/A on integrated problem-solving
Discussions on application strategies
Solving comprehensive computational problems
Demonstrations of integrated approaches
Explaining systematic problem-solving
Calculators, comprehensive problem sets
Calculators, real-world application examples
KLB Mathematics Book Three Pg 97
6 6
Commercial Arithmetic
Simple interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Apply simple interest formula
Solve basic interest problems
Q/A on interest concepts and terminology
Discussions on principal, rate, and time
Solving basic simple interest problems
Demonstrations of formula application
Explaining interest calculations
Calculators, simple interest charts
Calculators, real-world problem sets
KLB Mathematics Book Three Pg 98-99
6 7
Commercial Arithmetic
Compound interest
By the end of the lesson, the learner should be able to:
Calculate the compound interest
Apply compound interest formula
Understand compounding concepts
Q/A on compound interest principles
Discussions on compounding frequency
Solving basic compound interest problems
Demonstrations of compound calculations
Explaining compounding effects
Calculators, compound interest tables
Calculators, comparison worksheets
KLB Mathematics Book Three Pg 102-106
7

MIDTERM EXAMS

8

MIDTERM BREAK

9 1
Commercial Arithmetic
Appreciation
Depreciation
By the end of the lesson, the learner should be able to:
Calculate the appreciation value of items
Apply appreciation concepts
Solve appreciation problems
Q/A on appreciation concepts
Discussions on asset value increases
Solving appreciation calculation problems
Demonstrations of value growth
Explaining appreciation applications
Calculators, appreciation examples
Calculators, depreciation charts
KLB Mathematics Book Three Pg 108
9 2
Commercial Arithmetic
Hire purchase
By the end of the lesson, the learner should be able to:
Find the hire purchase
Calculate hire purchase terms
Understand hire purchase concepts
Q/A on hire purchase principles
Discussions on installment buying
Solving basic hire purchase problems
Demonstrations of payment calculations
Explaining hire purchase benefits
Calculators, hire purchase examples
Calculators, complex hire purchase worksheets
KLB Mathematics Book Three Pg 110-112
9 3
Commercial Arithmetic
Circles: Chords and Tangents
Income tax and P.A.Y.E
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the income tax
Calculate the P.A.Y.E
Apply tax calculation methods
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems
Solving tax calculation problems
Demonstrations of tax computation
Explaining taxation principles
Income tax tables, calculators
Geometrical set, calculators
KLB Mathematics Book Three Pg 112-117
9 4
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Solve complex arc length problems
Apply arc concepts to real situations
Q/A on advanced arc applications
Discussions on practical arc measurements
Solving complex arc problems
Demonstrations of real-world applications
Explaining engineering and design uses
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
9 5
Circles: Chords and Tangents
Chords
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
9 6
Circles: Chords and Tangents
Equal chords
Intersecting chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
9 7
Circles: Chords and Tangents
Intersecting chords
Chord properties
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
10 1
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
10 2
Circles: Chords and Tangents
Properties of tangents to a circle from an external point
Tangent properties
By the end of the lesson, the learner should be able to:
State the properties of tangents to a circle from an external point
Apply external tangent properties
Solve external tangent problems
Q/A on external tangent concepts
Discussions on tangent properties
Solving external tangent problems
Demonstrations of property applications
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 142-144
10 3
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
10 4
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 151-153
10 5
Circles: Chords and Tangents
Contact of circles
Circle contact
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
10 6
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
10 7
Circles: Chords and Tangents
Circumscribed circle
Escribed circles
By the end of the lesson, the learner should be able to:
Construct circumscribed circles
Find circumscribed circle properties
Apply circumscription concepts
Q/A on circumscription concepts
Discussions on circumscribed circle construction
Solving circumscription problems
Demonstrations of construction techniques
Explaining circumscription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165
11 1
Circles: Chords and Tangents
Centroid
Orthocenter
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
11 2
Circles: Chords and Tangents
Matrices
Matrices
Circle and triangle relationships
Introduction and real-life applications
Order of a matrix and elements
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
KLB Mathematics Book Three Pg 164-167
11 3
Matrices
Square matrices, row and column matrices
Addition of matrices
Subtraction of matrices
Combined addition and subtraction
By the end of the lesson, the learner should be able to:
Classify matrices by their dimensions
Identify square, row, and column matrices
Understand zero and null matrices
Apply matrix equality conditions
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns
Solving matrix identification using cutout papers
Demonstrations using classroom objects arrangement
Explaining matrix comparison using simple examples
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
KLB Mathematics Book Three Pg 169-170
11 4
Matrices
Scalar multiplication
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices by scalar quantities
Apply scalar multiplication rules
Understand the effect of scalar multiplication
Solve scalar multiplication problems
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts
Solving scalar problems using repeated addition
Demonstrations using groups of objects
Explaining scalar effects using enlargement concepts
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates
KLB Mathematics Book Three Pg 174-175
11 5
Matrices
Matrix multiplication (larger matrices)
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Multiply matrices of various orders
Apply multiplication to 3×3 and larger matrices
Determine when multiplication is possible
Calculate products efficiently
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts
Solving advanced problems using systematic methods
Demonstrations using organized calculation procedures
Explaining general principles using examples
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 176-179
11 6
Matrices
Real-world matrix multiplication applications
Identity matrix
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 176-179
11 7
Matrices
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183
12 1
Matrices
Inverse of 2×2 matrices - practice
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
KLB Mathematics Book Three Pg 185-187
12 2
Matrices
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-189
12 3
Matrices
Advanced simultaneous equation problems
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 188-190
12 4
Matrices
Transpose of matrices
Matrix equation solving
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples
KLB Mathematics Book Three Pg 170-174
12 5
Formulae and Variations
Introduction to formulae
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Define formulae and identify formula components
Recognize formulae in everyday contexts
Understand the relationship between variables
Appreciate the importance of formulae in mathematics
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae
Analyzing distance-time relationships using walking examples
Demonstrations using perimeter and area calculations
Explaining formula notation using simple examples
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
12 6
Formulae and Variations
Subject of a formula - intermediate cases
Subject of a formula - advanced cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books
KLB Mathematics Book Three Pg 191-193
12 7
Formulae and Variations
Applications of formula manipulation
Introduction to variation
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Apply formula rearrangement to practical problems
Solve real-world problems using formula manipulation
Calculate unknown quantities in various contexts
Interpret results in meaningful situations
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building
Solving application problems using formula rearrangement
Demonstrations using construction and farming scenarios
Explaining practical interpretation using community examples
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 191-193
13

END TERM EXAMS


Your Name Comes Here


Download

Feedback