If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Quadratic Expressions and Equations
|
Formation of quadratic equations
|
By the end of the
lesson, the learner
should be able to:
Form a quadratic equation from word problem Create equations from given roots Apply sum and product of roots |
Q/A on roots and coefficients relationship
Discussions on equation formation Solving word problems leading to equations Demonstrations of equation creation Explaining formation processes |
Calculators, word problem templates
|
KLB Mathematics Book Three Pg 9-10
|
|
| 2 | 2 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
|
KLB Mathematics Book Three Pg 24-26
|
|
| 2 | 3 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Perform complex calculations accurately Verify calculator results |
Q/A on calculator accuracy
Discussions on verification methods Solving complex computational problems Demonstrations of result checking Explaining calculation verification |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 26-28
|
|
| 2 | 4 |
Approximations and Errors
|
Approximation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
|
KLB Mathematics Book Three Pg 29-30
|
|
| 2 | 5 |
Approximations and Errors
|
Estimation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
|
KLB Mathematics Book Three Pg 30
|
|
| 2 | 6-7 |
Approximations and Errors
|
Accuracy and errors
Percentage error |
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types Find the percentage error of a given value Calculate percentage error accurately Interpret percentage error results |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance Q/A on percentage concepts Discussions on percentage error meaning Solving percentage error problems Demonstrations of percentage calculations Explaining error interpretation |
Calculators, error calculation sheets
Calculators, percentage error worksheets |
KLB Mathematics Book Three Pg 31-32
KLB Mathematics Book Three Pg 32-34 |
|
| 3 | 1 |
Approximations and Errors
|
Rounding off error and truncation error
|
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
|
KLB Mathematics Book Three Pg 34
|
|
| 3 | 2 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
|
KLB Mathematics Book Three Pg 35-36
|
|
| 3 | 3 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Apply error propagation to complex problems Verify error calculations |
Q/A on propagation mastery
Discussions on complex error scenarios Solving advanced propagation problems Demonstrations of verification methods Explaining error validation |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 35-36
|
|
| 3 | 4 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
|
KLB Mathematics Book Three Pg 36-37
|
|
| 3 | 5 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
|
KLB Mathematics Book Three Pg 36-37
|
|
| 3 | 6-7 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Calculate errors in quotients Apply division error rules Find the propagation of errors in division Solve complex division error problems Verify division error calculations |
Q/A on division error concepts
Discussions on quotient error calculation Solving division error problems Demonstrations of division error methods Explaining division error principles Q/A on division error mastery Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors |
Calculators, division error worksheets
Calculators, verification guides |
KLB Mathematics Book Three Pg 37-38
|
|
| 4 | 1 |
Approximations and Errors
|
Word problems
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
|
KLB Mathematics Book Three Pg 39-40
|
|
| 4 | 2 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
| 4 | 3 |
Surds
|
Order of surds and simplification
|
By the end of the
lesson, the learner
should be able to:
State the order of surds Identify surd orders correctly Simplify surds to lowest terms |
Q/A on surd definition and properties
Discussions on surd order concepts Solving order identification problems Demonstrations of surd simplification Explaining simplification techniques |
Calculators, surd order examples
|
KLB Mathematics Book Three Pg 78-79
|
|
| 4 | 4 |
Surds
|
Simplification of surds practice
|
By the end of the
lesson, the learner
should be able to:
Simplify surds using factorization Express surds in simplest form Apply systematic simplification methods |
Q/A on factorization techniques
Discussions on factor identification Solving extensive simplification problems Demonstrations of step-by-step methods Explaining perfect square extraction |
Calculators, factor trees, simplification worksheets
|
KLB Mathematics Book Three Pg 79-80
|
|
| 4 | 5 |
Surds
|
Addition of surds
|
By the end of the
lesson, the learner
should be able to:
Add surds with like terms Combine surds of the same order Simplify surd addition expressions |
Q/A on like term concepts
Discussions on surd addition rules Solving addition problems systematically Demonstrations of combining techniques Explaining when surds can be added |
Calculators, addition rule charts
|
KLB Mathematics Book Three Pg 79-80
|
|
| 4 | 6-7 |
Surds
|
Subtraction of surds
Multiplication of surds |
By the end of the
lesson, the learner
should be able to:
Subtract surds with like terms Apply subtraction rules to surds Simplify surd subtraction expressions Multiply surds of the same order Apply multiplication rules to surds Simplify products of surds |
Q/A on subtraction principles
Discussions on surd subtraction methods Solving subtraction problems Demonstrations of systematic approaches Explaining subtraction verification Q/A on multiplication concepts Discussions on surd multiplication laws Solving multiplication problems Demonstrations of product simplification Explaining multiplication principles |
Calculators, subtraction worksheets
Calculators, multiplication rule guides |
KLB Mathematics Book Three Pg 80
KLB Mathematics Book Three Pg 80-82 |
|
| 5 | 1 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
| 5 | 2 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
| 5 | 3 |
Surds
|
Advanced rationalization techniques
|
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
|
KLB Mathematics Book Three Pg 85-87
|
|
| 5 | 4 |
Further Logarithms
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Use calculators to find the logarithm of numbers Understand logarithmic notation and concepts Apply basic logarithmic principles |
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties Solving basic logarithm problems Demonstrations of calculator usage Explaining logarithm-exponential connections |
Calculators, logarithm definition charts
|
KLB Mathematics Book Three Pg 89
|
|
| 5 | 5 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
State the laws of logarithms Apply basic logarithmic laws Use logarithm laws for simple calculations |
Q/A on logarithmic law foundations
Discussions on multiplication and division laws Solving problems using basic laws Demonstrations of law applications Explaining law derivations |
Calculators, logarithm law charts
|
KLB Mathematics Book Three Pg 90-93
|
|
| 5 | 6-7 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Apply advanced logarithmic laws Combine multiple laws in calculations Use laws of logarithms to solve problems Master all logarithmic laws comprehensively Apply laws to challenging mathematical problems |
Q/A on law mastery and applications
Discussions on power and root laws Solving complex law-based problems Demonstrations of combined law usage Explaining advanced law techniques Q/A on comprehensive law understanding Discussions on law selection strategies Solving challenging logarithmic problems Demonstrations of optimal law application Explaining problem-solving approaches |
Calculators, advanced law worksheets
Calculators, challenging problem sets |
KLB Mathematics Book Three Pg 90-93
|
|
| 6 | 1 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Apply algebraic methods to logarithmic equations Verify solutions of logarithmic equations |
Q/A on equation-solving techniques
Discussions on logarithmic equation types Solving basic logarithmic equations Demonstrations of solution methods Explaining verification techniques |
Calculators, equation-solving guides
|
KLB Mathematics Book Three Pg 93-95
|
|
| 6 | 2 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Handle complex logarithmic equations Apply advanced solution techniques |
Q/A on advanced equation methods
Discussions on complex equation structures Solving challenging logarithmic equations Demonstrations of sophisticated techniques Explaining advanced solution strategies |
Calculators, advanced equation worksheets
|
KLB Mathematics Book Three Pg 93-95
|
|
| 6 | 3 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to numerical computations Use logarithms for complex calculations |
Q/A on computational applications
Discussions on numerical problem-solving Solving computation-based problems Demonstrations of logarithmic calculations Explaining computational advantages |
Calculators, computation worksheets
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 4 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 5 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Master advanced logarithmic computations Apply logarithms to complex mathematical scenarios |
Q/A on advanced computational mastery
Discussions on complex calculation strategies Solving advanced computation problems Demonstrations of sophisticated methods Explaining optimal computational approaches |
Calculators, advanced computation guides
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 6-7 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to computational applications Integrate logarithmic concepts systematically Solve problems involving logarithms Apply logarithmic concepts to real-world situations Handle practical logarithmic applications |
Q/A on integrated problem-solving
Discussions on application strategies Solving comprehensive computational problems Demonstrations of integrated approaches Explaining systematic problem-solving Q/A on real-world applications Discussions on practical problem contexts Solving real-world logarithmic problems Demonstrations of practical applications Explaining everyday logarithm usage |
Calculators, comprehensive problem sets
Calculators, real-world application examples |
KLB Mathematics Book Three Pg 97
|
|
| 7 | 1 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
|
KLB Mathematics Book Three Pg 98-99
|
|
| 7 | 2 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Solve complex simple interest problems Apply simple interest to real-world situations |
Q/A on advanced simple interest concepts
Discussions on practical applications Solving complex interest problems Demonstrations of real-world scenarios Explaining business applications |
Calculators, real-world problem sets
|
KLB Mathematics Book Three Pg 98-101
|
|
| 7 | 3 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Apply compound interest formula Understand compounding concepts |
Q/A on compound interest principles
Discussions on compounding frequency Solving basic compound interest problems Demonstrations of compound calculations Explaining compounding effects |
Calculators, compound interest tables
|
KLB Mathematics Book Three Pg 102-106
|
|
| 7 | 4 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Solve advanced compound interest problems Compare simple and compound interest |
Q/A on advanced compounding scenarios
Discussions on investment comparisons Solving complex compound problems Demonstrations of comparison methods Explaining investment decisions |
Calculators, comparison worksheets
|
KLB Mathematics Book Three Pg 102-107
|
|
| 7 | 5 |
Commercial Arithmetic
|
Appreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
|
KLB Mathematics Book Three Pg 108
|
|
| 7 | 6-7 |
Commercial Arithmetic
|
Depreciation
Hire purchase |
By the end of the
lesson, the learner
should be able to:
Calculate the depreciation value of items Apply depreciation methods Solve depreciation problems Find the hire purchase Calculate hire purchase terms Understand hire purchase concepts |
Q/A on depreciation concepts and methods
Discussions on asset value decreases Solving depreciation calculation problems Demonstrations of depreciation methods Explaining business depreciation Q/A on hire purchase principles Discussions on installment buying Solving basic hire purchase problems Demonstrations of payment calculations Explaining hire purchase benefits |
Calculators, depreciation charts
Calculators, hire purchase examples |
KLB Mathematics Book Three Pg 109
KLB Mathematics Book Three Pg 110-112 |
|
| 8 |
MID TERM BREAK |
|||||||
| 9 | 1 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Solve complex hire purchase problems Calculate total costs and interest charges |
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures Solving challenging hire purchase problems Demonstrations of cost analysis Explaining consumer finance decisions |
Calculators, complex hire purchase worksheets
|
KLB Mathematics Book Three Pg 110-112
|
|
| 9 | 2 |
Commercial Arithmetic
|
Income tax and P.A.Y.E
|
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
|
KLB Mathematics Book Three Pg 112-117
|
|
| 9 | 3 |
Matrices
|
Introduction and real-life applications
Order of a matrix and elements |
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register |
KLB Mathematics Book Three Pg 168-169
|
|
| 9 | 4 |
Matrices
|
Square matrices, row and column matrices
Addition of matrices |
By the end of the
lesson, the learner
should be able to:
Classify matrices by their dimensions Identify square, row, and column matrices Understand zero and null matrices Apply matrix equality conditions |
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns Solving matrix identification using cutout papers Demonstrations using classroom objects arrangement Explaining matrix comparison using simple examples |
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 169-170
|
|
| 9 | 5 |
Matrices
|
Subtraction of matrices
Combined addition and subtraction |
By the end of the
lesson, the learner
should be able to:
Subtract matrices of the same order Apply matrix subtraction rules correctly Understand order requirements for subtraction Solve complex matrix subtraction problems |
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples Solving subtraction problems on blackboard Demonstrations using number line concepts Explaining sign changes using practical examples |
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards |
KLB Mathematics Book Three Pg 170-171
|
|
| 9 | 6-7 |
Matrices
|
Scalar multiplication
Introduction to matrix multiplication Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply matrices by scalar quantities Apply scalar multiplication rules Understand the effect of scalar multiplication Solve scalar multiplication problems Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts Solving scalar problems using repeated addition Demonstrations using groups of objects Explaining scalar effects using enlargement concepts Q/A on 2×2 matrix multiplication using simple numbers Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-175
KLB Mathematics Book Three Pg 176-179 |
|
| 10 | 1 |
Matrices
|
Matrix multiplication (larger matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
| 10 | 2 |
Matrices
|
Properties of matrix multiplication
|
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
|
KLB Mathematics Book Three Pg 174-179
|
|
| 10 | 3 |
Matrices
|
Real-world matrix multiplication applications
|
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
| 10 | 4 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
| 10 | 5 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
| 10 | 6-7 |
Matrices
|
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant Q/A on inverse calculation verification methods Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183-185
KLB Mathematics Book Three Pg 185-187 |
|
| 11 | 1 |
Matrices
|
Introduction to solving simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
|
KLB Mathematics Book Three Pg 188-189
|
|
| 11 | 2 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
| 11 | 3 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
| 11 | 4 |
Matrices
|
Matrix applications in real-world problems
|
By the end of the
lesson, the learner
should be able to:
Apply matrix operations to practical scenarios Solve business, engineering, and scientific problems Model real situations using matrices Interpret matrix solutions in context |
Q/A on practical applications using local examples
Discussions on modeling using familiar situations Solving comprehensive problems using matrix tools Demonstrations using community-based scenarios Explaining solution interpretation using meaningful contexts |
Chalk and blackboard, local business examples, exercise books
|
KLB Mathematics Book Three Pg 168-190
|
|
| 11 | 5 |
Matrices
|
Transpose of matrices
|
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
|
KLB Mathematics Book Three Pg 170-174
|
|
| 11 | 6-7 |
Matrices
Binomial Expansion |
Matrix equation solving
Binomial expansions up to power four |
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions Expand binomial function up to power four Apply systematic multiplication methods Recognize coefficient patterns in expansions Use multiplication to expand binomial expressions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods Q/A on algebraic multiplication using familiar expressions Discussions on systematic expansion using step-by-step methods Solving basic binomial multiplication problems Demonstrations using area models and rectangular arrangements Explaining pattern recognition using organized layouts |
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, rectangular cutouts from paper, exercise books |
KLB Mathematics Book Three Pg 183-190
KLB Mathematics Book Three Pg 256 |
|
| 12 | 1 |
Binomial Expansion
|
Binomial expansions up to power four (continued)
|
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Handle increasingly complex coefficient patterns Apply systematic expansion techniques efficiently Verify expansions using substitution methods |
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis Solving expansion problems using systematic approaches Demonstrations using geometric representations Explaining verification methods using numerical substitution |
Chalk and blackboard, squared paper for geometric models, exercise books
|
KLB Mathematics Book Three Pg 256
|
|
| 12 | 2 |
Binomial Expansion
|
Pascal's triangle
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Construct Pascal's triangle systematically Apply triangle coefficients for binomial expansions Recognize number patterns in the triangle |
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis Solving triangle construction and application problems Demonstrations using visual triangle building Explaining pattern connections using systematic observation |
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
|
KLB Mathematics Book Three Pg 256-257
|
|
| 12 | 3 |
Binomial Expansion
|
Pascal's triangle applications
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply Pascal's triangle to binomial expansions efficiently Use triangle coefficients for various powers Solve expansion problems using triangle methods |
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods Solving expansion problems using Pascal's triangle Demonstrations using triangle-guided calculations Explaining efficiency benefits using comparative methods |
Chalk and blackboard, Pascal's triangle reference charts, exercise books
|
KLB Mathematics Book Three Pg 257-258
|
|
| 12 | 4 |
Binomial Expansion
|
Pascal's triangle (continued)
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply triangle to complex expansion problems Handle higher powers using Pascal's triangle Integrate triangle concepts with algebraic expansion |
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods Solving challenging problems using Pascal's triangle Demonstrations using detailed triangle constructions Explaining integration using comprehensive examples |
Chalk and blackboard, advanced triangle patterns, exercise books
|
KLB Mathematics Book Three Pg 258-259
|
|
| 12 | 5 |
Binomial Expansion
|
Pascal's triangle advanced
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply general binomial theorem concepts Understand combination notation in expansions Use general term formula applications |
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles Solving general term problems using formula application Demonstrations using systematic formula usage Explaining general principles using algebraic reasoning |
Chalk and blackboard, combination calculation aids, exercise books
|
KLB Mathematics Book Three Pg 258-259
|
|
| 12 | 6-7 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions Use binomial expansion to solve numerical problems Apply binomial methods to complex calculations Handle decimal approximations using expansions Solve practical numerical problems |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples Q/A on advanced numerical applications using complex scenarios Discussions on decimal approximation using expansion techniques Solving challenging numerical problems using systematic methods Demonstrations using detailed calculation procedures Explaining practical relevance using real-world examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
Your Name Comes Here