If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
ACIDS, BASES AND SALTS
|
Definition of Acids
|
By the end of the
lesson, the learner
should be able to:
- Define an acid in terms of hydrogen ions -Investigate reactions of magnesium and zinc carbonate with different acids -Write equations for reactions taking place -Explain why magnesium strip should be cleaned |
Class experiment: React cleaned magnesium strips with 2M HCl, 2M ethanoic acid, 2M H₂SO₄, 2M ethanedioic acid. Record observations in table. Repeat using zinc carbonate. Write chemical equations. Discuss hydrogen ion displacement and gas evolution.
|
Magnesium strips, zinc carbonate, 2M HCl, 2M ethanoic acid, 2M H₂SO₄, 2M ethanedioic acid, test tubes, test tube rack
|
KLB Secondary Chemistry Form 4, Pages 1-3
|
|
| 2 | 2-3 |
ACIDS, BASES AND SALTS
|
Strength of Acids
Definition of Bases Strength of Bases Acid-Base Reactions |
By the end of the
lesson, the learner
should be able to:
- Compare strengths of acids using pH values -Determine strengths of acids by comparing their electrical conductivity -Classify acids as either strong or weak -Explain complete and partial dissociation of acids - Compare strengths of bases using pH values -Determine strengths of bases by comparing their electrical conductivity -Classify bases as either strong or weak -Explain complete and partial ionization of bases |
Class experiment: Test pH of 2M HCl and 2M ethanoic acid using universal indicator. Set up electrical conductivity apparatus with both acids. Record milliammeter readings. Compare results and explain in terms of hydrogen ion concentration. Discuss strong vs weak acid definitions.
Class experiment: Test pH of 2M NaOH and 2M ammonia solution using universal indicator. Test electrical conductivity of both solutions using same apparatus as acids. Compare deflections and pH values. Explain in terms of OH⁻ ion concentration and complete vs partial ionization. |
2M HCl, 2M ethanoic acid, universal indicator, pH chart, electrical conductivity apparatus, milliammeter, carbon electrodes, beakers, wires
Calcium hydroxide, red litmus paper, phenolphthalein indicator, distilled water, test tubes, spatula, evaporating dish 2M NaOH, 2M ammonia solution, universal indicator, pH chart, electrical conductivity apparatus, milliammeter, carbon electrodes Various acids and bases from previous lessons, indicators, beakers, measuring cylinders, stirring rods |
KLB Secondary Chemistry Form 4, Pages 3-5
KLB Secondary Chemistry Form 4, Pages 5-7 |
|
| 2 | 4 |
ACIDS, BASES AND SALTS
|
Effect of Solvent on Acids
Effect of Solvent on Bases |
By the end of the
lesson, the learner
should be able to:
- Explain effect of polar and non-polar solvents on hydrogen chloride -Investigate HCl behavior in water vs methylbenzene -Define polar and non-polar solvents -Explain why acids show properties only in polar solvents |
Teacher demonstration: Dissolve HCl gas in water and methylbenzene separately. Test both solutions with litmus paper, magnesium, and calcium carbonate. Compare observations. Explain polarity of water vs methylbenzene. Discuss dissociation vs molecular solution.
|
HCl gas, distilled water, methylbenzene, magnesium ribbon, calcium carbonate, litmus paper, test tubes, gas absorption apparatus
Dry ammonia gas, distilled water, methylbenzene, red litmus paper, test tubes, gas collection apparatus |
KLB Secondary Chemistry Form 4, Pages 7-9
|
|
| 2 | 5 |
ACIDS, BASES AND SALTS
|
Amphoteric Oxides and Hydroxides
Definition of Salts and Precipitation |
By the end of the
lesson, the learner
should be able to:
- Define amphoteric oxides -Identify some amphoteric oxides -Investigate reactions with both acids and alkalis -Write equations for amphoteric behavior |
Class experiment: React Al₂O₃, ZnO, PbO, Zn(OH)₂, Al(OH)₃, Pb(OH)₂ with 2M HNO₃ and 2M NaOH. Warm mixtures. Record observations in table. Write equations showing basic and acidic behavior. Discuss dual nature of amphoteric substances.
|
Al₂O₃, ZnO, PbO, Zn(OH)₂, Al(OH)₃, Pb(OH)₂, 2M HNO₃, 2M NaOH, boiling tubes, heating source
Na₂CO₃ solution, salt solutions containing various metal ions, test tubes, droppers |
KLB Secondary Chemistry Form 4, Pages 10-11
|
|
| 3 | 1 |
ACIDS, BASES AND SALTS
|
Solubility of Chlorides, Sulphates and Sulphites
|
By the end of the
lesson, the learner
should be able to:
- Find out cations that form insoluble chlorides, sulphates and sulphites -Write ionic equations for formation of insoluble salts -Distinguish between sulphate and sulphite precipitates -Investigate effect of warming on precipitates |
Class experiment: Add NaCl, Na₂SO₄, Na₂SO₃ to solutions of Pb²⁺, Ba²⁺, Mg²⁺, Ca²⁺, Zn²⁺, Cu²⁺, Fe²⁺, Fe³⁺, Al³⁺. Warm mixtures. Record observations in table. Test sulphite precipitates with dilute HCl. List soluble and insoluble salts.
|
2M NaCl, 2M Na₂SO₄, 2M Na₂SO₃, 0.1M salt solutions, dilute HCl, test tubes, heating source
|
KLB Secondary Chemistry Form 4, Pages 14-16
|
|
| 3 | 2-3 |
ACIDS, BASES AND SALTS
|
Complex Ions Formation
Solubility and Saturated Solutions |
By the end of the
lesson, the learner
should be able to:
- Explain formation of complex ions -Investigate reactions with excess sodium hydroxide and ammonia -Identify metal ions that form complex ions -Write equations for complex ion formation - Define the term solubility -Determine solubility of a given salt at room temperature -Calculate mass of solute and solvent -Express solubility in different units |
Class experiment: Add NaOH dropwise then in excess to Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺ solutions. Repeat with NH₃ solution. Record observations showing precipitate formation and dissolution. Write equations for complex ion formation: [Zn(OH)₄]²⁻, [Al(OH)₄]⁻, [Pb(OH)₄]²⁻, [Zn(NH₃)₄]²⁺, [Cu(NH₃)₄]²⁺.
Class experiment: Weigh evaporating dish and watch glass. Measure 20cm³ saturated KNO₃ solution. Record temperature. Evaporate to dryness carefully. Calculate masses of solute, solvent, and solution. Determine solubility per 100g water and in moles per litre. Discuss definition and significance. |
2M NaOH, 2M NH₃ solution, 0.5M salt solutions, test tubes, droppers
Saturated KNO₃ solution, evaporating dish, watch glass, measuring cylinder, thermometer, balance, heating source |
KLB Secondary Chemistry Form 4, Pages 15-16
KLB Secondary Chemistry Form 4, Pages 16-18 |
|
| 3 | 4 |
ACIDS, BASES AND SALTS
|
Effect of Temperature on Solubility
|
By the end of the
lesson, the learner
should be able to:
- Investigate the effect of temperature on solubility of potassium chlorate -Record temperature at which crystals appear -Calculate solubility at different temperatures -Plot solubility curve |
Class experiment: Dissolve 4g KClO₃ in 15cm³ water by warming. Cool while stirring and note crystallization temperature. Add 5cm³ water portions and repeat until total volume is 40cm³. Calculate solubility in g/100g water for each temperature. Plot solubility vs temperature graph.
|
KClO₃, measuring cylinders, thermometer, burette, boiling tubes, heating source, graph paper
|
KLB Secondary Chemistry Form 4, Pages 18-20
|
|
| 3 | 5 |
ACIDS, BASES AND SALTS
|
Solubility Curves and Applications
|
By the end of the
lesson, the learner
should be able to:
- Plot solubility curves for various salts -Use solubility curves to determine mass of crystals formed -Apply solubility curves to practical problems -Compare solubility patterns of different salts |
Using data from textbook, plot solubility curves for KNO₃, KClO₃, NaCl, CaSO₄. Calculate mass of crystals deposited when saturated solutions are cooled. Work through examples: KClO₃ cooled from 70°C to 30°C. Discuss applications in salt extraction and purification.
|
Graph paper, ruler, pencil, calculator, data tables from textbook
|
KLB Secondary Chemistry Form 4, Pages 20-21
|
|
| 4 | 1 |
ACIDS, BASES AND SALTS
|
Fractional Crystallization
|
By the end of the
lesson, the learner
should be able to:
- Define fractional crystallization -Apply knowledge of solubility curves in separation of salts -Calculate masses of salts that crystallize -Explain separation of salt mixtures |
Work through separation problems using solubility data for KNO₃ and KClO₃ mixtures. Calculate which salt crystallizes first when cooled from 50°C to 20°C. Plot combined solubility curves. Discuss applications in Lake Magadi and Ngomeni salt works. Solve practice problems.
|
Calculator, graph paper, data tables, worked examples from textbook
|
KLB Secondary Chemistry Form 4, Pages 21-22
|
|
| 4 | 2-3 |
ACIDS, BASES AND SALTS
|
Hardness of Water - Investigation
Types and Causes of Water Hardness Effects of Hard Water |
By the end of the
lesson, the learner
should be able to:
- Determine the effects of various salt solutions on soap -Identify cations that cause hardness -Distinguish between hard and soft water -Investigate effect of boiling on water hardness - State disadvantages of hard water -State advantages of hard water -Explain formation of scum and fur -Discuss economic and health implications |
Class experiment: Test soap lathering with distilled water, tap water, rainwater, and solutions of MgCl₂, NaCl, Ca(NO₃)₂, CaHCO₃, NaHCO₃, ZnSO₄. Record volumes of soap needed. Boil some solutions and retest. Compare results and identify hardness-causing ions.
Discussion based on practical experience: Soap wastage, scum formation on clothes, fur in kettles and pipes, pipe bursting in boilers. Advantages: calcium for bones, protection of lead pipes, use in brewing. Show examples of fur deposits. Calculate economic costs of hard water in households. |
Soap solution, burette, various salt solutions, conical flasks, distilled water, tap water, rainwater, heating source
Student books, examples from previous experiment, chalkboard for equations Samples of fur deposits, pictures of scaled pipes, calculator for cost analysis |
KLB Secondary Chemistry Form 4, Pages 22-24
KLB Secondary Chemistry Form 4, Pages 24-25 |
|
| 4 | 4 |
ACIDS, BASES AND SALTS
|
Methods of Removing Hardness I
|
By the end of the
lesson, the learner
should be able to:
- Explain removal of hardness by boiling -Explain removal by distillation -Write equations for these processes -Compare effectiveness of different methods |
Demonstrate boiling method: Boil hard water samples from previous experiments and test with soap. Write equations for Ca(HCO₃)₂ and Mg(HCO₃)₂ decomposition. Discuss distillation method using apparatus setup. Compare costs and effectiveness. Explain why boiling only removes temporary hardness.
|
Hard water samples, heating source, soap solution, distillation apparatus diagram
|
KLB Secondary Chemistry Form 4, Pages 25-26
|
|
| 4 | 5 |
ACIDS, BASES AND SALTS
|
Methods of Removing Hardness II
|
By the end of the
lesson, the learner
should be able to:
- Explain removal using sodium carbonate -Describe ion exchange method -Explain removal using calcium hydroxide and ammonia -Write equations for all processes |
Demonstrate addition of Na₂CO₃ to hard water - observe precipitation. Explain ion exchange using resin (NaX) showing Ca²⁺ + 2NaX → CaX₂ + 2Na⁺. Discuss regeneration with brine. Write equations for Ca(OH)₂ and NH₃ methods. Compare all methods for effectiveness and cost.
|
Na₂CO₃ solution, hard water samples, ion exchange resin diagram, Ca(OH)₂, NH₃ solution
|
KLB Secondary Chemistry Form 4, Pages 25-26
|
|
| 5 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Endothermic and Exothermic Reactions
|
By the end of the
lesson, the learner
should be able to:
- Define endothermic and exothermic reactions using ΔH notation -Investigate temperature changes when ammonium nitrate and sodium hydroxide dissolve in water -Explain observations made during dissolution -Draw energy level diagrams for endothermic and exothermic reactions |
Class experiment: Wrap 250ml plastic beakers with tissue paper. Dissolve 2 spatulafuls of NH₄NO₃ in 100ml distilled water, record temperature changes. Repeat with NaOH pellets. Compare initial and final temperatures. Draw energy level diagrams showing relative energies of reactants and products.
|
250ml plastic beakers, tissue paper, rubber bands, NH₄NO₃, NaOH pellets, distilled water, thermometers, spatulas, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 29-31
|
|
| 5 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy Notation and Energy Content
Bond Breaking and Bond Formation |
By the end of the
lesson, the learner
should be able to:
- Define enthalpy and enthalpy change -Use the symbol ΔH to represent enthalpy changes -Calculate enthalpy changes using the formula ΔH = H(products) - H(reactants) -Distinguish between positive and negative enthalpy changes - Explain that energy changes are due to bond breaking and bond formation -Describe bond breaking as endothermic and bond formation as exothermic -Investigate energy changes during melting and boiling -Plot heating curves for pure substances |
Q/A: Review previous experiment results. Introduce enthalpy symbol H and enthalpy change ΔH. Calculate enthalpy changes from previous experiments. Explain why endothermic reactions have positive ΔH and exothermic reactions have negative ΔH. Practice calculations with worked examples.
Class experiment: Heat crushed ice while stirring with thermometer. Record temperature every minute until ice melts completely, then continue until water boils. Plot temperature-time graph. Explain constant temperature during melting and boiling in terms of bond breaking. Discuss latent heat of fusion and vaporization. |
Student books, calculators, worked examples from textbook, chalkboard for calculations
Crushed pure ice, 250ml glass beakers, thermometers, heating source, stopwatch, graph paper, stirring rods |
KLB Secondary Chemistry Form 4, Pages 31-32
KLB Secondary Chemistry Form 4, Pages 32-35 |
|
| 5 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Latent Heat of Fusion and Vaporization
|
By the end of the
lesson, the learner
should be able to:
- Define latent heat of fusion and molar heat of fusion -Define latent heat of vaporization and molar heat of vaporization -Explain why temperature remains constant during phase changes -Relate intermolecular forces to melting and boiling points |
Discussion based on previous heating curve experiment. Explain energy used to overcome intermolecular forces during melting and boiling. Compare molar heats of fusion and vaporization for water and ethanol. Relate strength of intermolecular forces to magnitude of latent heats. Calculate energy required for phase changes.
|
Data tables showing molar heats of fusion/vaporization, calculators, heating curves from previous lesson
|
KLB Secondary Chemistry Form 4, Pages 32-35
|
|
| 5 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Bond Energy Calculations
|
By the end of the
lesson, the learner
should be able to:
- Calculate energy changes in reactions using bond energies -Apply the formula: Heat of reaction = Bond breaking energy + Bond formation energy -Determine whether reactions are exothermic or endothermic -Use bond energy data to solve problems |
Work through formation of HCl from H₂ and Cl₂ using bond energies. Calculate energy required to break H-H and Cl-Cl bonds. Calculate energy released when H-Cl bonds form. Apply formula: ΔH = Energy absorbed - Energy released. Practice with additional examples. Discuss why calculated values may differ from experimental values.
|
Bond energy data tables, calculators, worked examples, practice problems
|
KLB Secondary Chemistry Form 4, Pages 35-36
|
|
| 6 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Determination of Enthalpy of Solution I
|
By the end of the
lesson, the learner
should be able to:
- Determine the enthalpy changes of solution of ammonium nitrate and sodium hydroxide -Calculate enthalpy change using ΔH = mcΔT -Calculate number of moles of solute dissolved -Determine molar heat of solution |
Class experiment: Dissolve exactly 2.0g NH₄NO₃ in 100ml distilled water in plastic beaker. Record temperature change. Repeat with 2.0g NaOH. Calculate enthalpy changes using ΔH = mcΔT where m = 100g, c = 4.2 kJ kg⁻¹K⁻¹. Calculate moles dissolved and molar heat of solution.
|
250ml plastic beakers, 2.0g samples of NH₄NO₃ and NaOH, distilled water, thermometers, measuring cylinders, analytical balance, calculators
|
KLB Secondary Chemistry Form 4, Pages 36-38
|
|
| 6 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Thermochemical Equations
Enthalpy of Solution of Concentrated Sulphuric Acid Enthalpy of Combustion |
By the end of the
lesson, the learner
should be able to:
- Write thermochemical equations including enthalpy changes -Define molar heat of solution -Draw energy level diagrams for dissolution reactions -Interpret thermochemical equations correctly - Determine heat of solution of concentrated sulphuric(VI) acid -Apply safety precautions when handling concentrated acids -Calculate enthalpy change considering density and purity -Write thermochemical equation for the reaction |
Using data from previous experiment, write thermochemical equations for NH₄NO₃ and NaOH dissolution. Show proper notation with state symbols and ΔH values. Draw corresponding energy level diagrams. Practice writing thermochemical equations for various reactions. Explain significance of molar quantities in equations.
Teacher demonstration: Carefully add 2cm³ concentrated H₂SO₄ to 98cm³ distilled water in wrapped beaker (NEVER vice versa). Record temperature change. Calculate mass of acid using density (1.84 g/cm³) and purity (98%). Calculate molar heat of solution. Emphasize safety - always add acid to water. |
Results from previous experiment, graph paper for energy level diagrams, practice examples
Concentrated H₂SO₄, distilled water, 250ml plastic beaker, tissue paper, measuring cylinders, thermometer, safety equipment Ethanol, small bottles with wicks, 250ml glass beakers, tripod stands, wire gauze, thermometers, analytical balance, measuring cylinders |
KLB Secondary Chemistry Form 4, Pages 38-39
KLB Secondary Chemistry Form 4, Pages 39-41 |
|
| 6 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy of Displacement
|
By the end of the
lesson, the learner
should be able to:
- Define molar heat of displacement -Investigate displacement of copper(II) ions by zinc -Calculate molar heat of displacement -Explain relationship between position in reactivity series and heat of displacement |
Class experiment: Add 4.0g zinc powder to 100cm³ of 0.5M CuSO₄ solution in wrapped plastic beaker. Record temperature change and observations. Calculate moles of Zn used and Cu²⁺ displaced. Determine molar heat of displacement. Write ionic equation. Discuss why excess zinc is used. Compare with theoretical value.
|
Zinc powder, 0.5M CuSO₄ solution, 250ml plastic beakers, tissue paper, thermometers, analytical balance, stirring rods
|
KLB Secondary Chemistry Form 4, Pages 44-47
|
|
| 6 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy of Neutralization
|
By the end of the
lesson, the learner
should be able to:
- Define molar heat of neutralization -Determine heat of neutralization of HCl with NaOH -Compare neutralization enthalpies of strong and weak acids/bases -Write ionic equations for neutralization reactions |
Class experiment: Mix 50cm³ of 2M HCl with 50cm³ of 2M NaOH in wrapped beaker. Record temperature changes. Calculate molar heat of neutralization. Repeat with weak acid (ethanoic) and weak base (ammonia). Compare values. Write ionic equations. Explain why strong acid + strong base gives ~57.2 kJ/mol.
|
2M HCl, 2M NaOH, 2M ethanoic acid, 2M ammonia solution, measuring cylinders, thermometers, 250ml plastic beakers, tissue paper
|
KLB Secondary Chemistry Form 4, Pages 47-49
|
|
| 7 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Standard Conditions and Standard Enthalpy Changes
|
By the end of the
lesson, the learner
should be able to:
- Identify standard conditions for measuring enthalpy changes -Define standard enthalpy changes using ΔH° notation -Explain importance of standard conditions -Use subscripts to denote different types of enthalpy changes |
Q/A: Review previous enthalpy measurements. Introduce standard conditions: 25°C (298K) and 1 atmosphere pressure (101.325 kPa). Explain ΔH° notation and subscripts (ΔH°c for combustion, ΔH°f for formation, etc.). Discuss why standard conditions are necessary for comparison. Practice using correct notation.
|
Student books, examples of standard enthalpy data, notation practice exercises
|
KLB Secondary Chemistry Form 4, Pages 49
|
|
| 7 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Hess's Law - Introduction and Theory
Energy Cycle Diagrams |
By the end of the
lesson, the learner
should be able to:
- State Hess's Law -Explain the principle of energy conservation in chemical reactions -Understand that enthalpy change is independent of reaction route -Apply Hess's Law to simple examples - Draw energy cycle diagrams -Link enthalpy of formation with enthalpy of combustion -Calculate unknown enthalpy changes using energy cycles -Apply Hess's Law to determine enthalpy of formation |
Introduce Hess's Law: "The energy change in converting reactants to products is the same regardless of the route by which the chemical change occurs." Use methane formation example to show two routes giving same overall energy change. Draw energy cycle diagrams. Explain law of conservation of energy application.
Work through energy cycle for formation of CO from carbon and oxygen using combustion data. Draw cycle showing Route 1 (direct combustion) and Route 2 (formation then combustion). Calculate ΔH°f(CO) = ΔH°c(C) - ΔH°c(CO). Practice with additional examples including ethanol formation. |
Energy cycle diagrams for methane formation, chalkboard illustrations, worked examples from textbook
Graph paper, energy cycle templates, combustion data tables, calculators |
KLB Secondary Chemistry Form 4, Pages 49-52
KLB Secondary Chemistry Form 4, Pages 52-54 |
|
| 7 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Hess's Law Calculations
|
By the end of the
lesson, the learner
should be able to:
- Solve complex problems using Hess's Law -Apply energy cycles to multi-step reactions -Calculate enthalpy of formation from combustion data -Use thermochemical equations in Hess's Law problems |
Work through detailed calculation for ethanol formation: 2C(s) + 3H₂(g) + ½O₂(g) → C₂H₅OH(l). Use combustion enthalpies of carbon (-393 kJ/mol), hydrogen (-286 kJ/mol), and ethanol (-1368 kJ/mol). Calculate ΔH°f(ethanol) = -278 kJ/mol. Practice with propane and other compounds.
|
Worked examples, combustion data, calculators, step-by-step calculation sheets
|
KLB Secondary Chemistry Form 4, Pages 54-56
|
|
| 7 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Lattice Energy and Hydration Energy
|
By the end of the
lesson, the learner
should be able to:
- Define lattice energy and hydration energy -Explain relationship between heat of solution, lattice energy and hydration energy -Draw energy cycles for dissolution of ionic compounds -Calculate heat of solution using Born-Haber type cycles |
Explain dissolution of NaCl: first lattice breaks (endothermic), then ions hydrate (exothermic). Define lattice energy as energy to form ionic solid from gaseous ions. Define hydration energy as energy when gaseous ions become hydrated. Draw energy cycle: ΔH(solution) = ΔH(lattice) + ΔH(hydration). Calculate for NaCl.
|
Energy cycle diagrams, lattice energy and hydration energy data tables, calculators
|
KLB Secondary Chemistry Form 4, Pages 54-56
|
|
| 8 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Factors Affecting Lattice and Hydration Energies
|
By the end of the
lesson, the learner
should be able to:
- Explain factors affecting lattice energy -Explain factors affecting hydration energy -Use data tables to identify trends -Calculate enthalpies of solution for various ionic compounds |
Analyze data tables showing lattice energies (Table 2.7) and hydration energies (Table 2.6). Identify trends: smaller ions and higher charges give larger lattice energies and hydration energies. Calculate heat of solution for MgCl₂ using: ΔH(solution) = +2489 + (-1891 + 2×(-384)) = -170 kJ/mol. Practice with other compounds.
|
Data tables from textbook, calculators, trend analysis exercises
|
KLB Secondary Chemistry Form 4, Pages 54-56
|
|
| 8-9 |
Midterm break |
|||||||
| 9 | 3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Definition and Types of Fuels
|
By the end of the
lesson, the learner
should be able to:
- Define a fuel -Classify fuels as solid, liquid, or gaseous -State examples of each type of fuel -Explain energy conversion in fuel combustion |
Q/A: List fuels used at home and school. Define fuel as "substance that produces useful energy when it undergoes chemical or nuclear reaction." Classify examples: solids (coal, charcoal, wood), liquids (petrol, kerosene, diesel), gases (natural gas, biogas, LPG). Discuss energy conversions during combustion.
|
Examples of different fuels, classification charts, pictures of fuel types
|
KLB Secondary Chemistry Form 4, Pages 56
|
|
| 9 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Heating Values of Fuels
|
By the end of the
lesson, the learner
should be able to:
- Define heating value of a fuel -Calculate heating values from molar enthalpies of combustion -Compare heating values of different fuels -Explain units of heating value (kJ/g) |
Calculate heating value of ethanol: ΔH°c = -1360 kJ/mol, Molar mass = 46 g/mol, Heating value = 1360/46 = 30 kJ/g. Compare heating values from Table 2.8: methane (55 kJ/g), fuel oil (45 kJ/g), charcoal (33 kJ/g), wood (17 kJ/g). Discuss significance of these values for fuel selection.
|
Heating value data table, calculators, fuel comparison charts
|
KLB Secondary Chemistry Form 4, Pages 56-57
|
|
| 9 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Factors in Fuel Selection
Environmental Effects of Fuels |
By the end of the
lesson, the learner
should be able to:
- State factors that influence choice of fuel -Explain why different fuels are chosen for different purposes -Compare advantages and disadvantages of various fuels -Apply selection criteria to real situations |
Discuss seven factors: heating value, ease of combustion, availability, transportation, storage, environmental effects, cost. Compare wood/charcoal for domestic use vs methylhydrazine for rockets. Analyze why each is suitable for its purpose. Students suggest best fuels for cooking, heating, transport in their area.
|
Fuel comparison tables, local fuel availability data, cost analysis sheets
Pictures of environmental damage, pollution data, examples of clean technology |
KLB Secondary Chemistry Form 4, Pages 57
|
|
| 10 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Fuel Safety and Precautions
|
By the end of the
lesson, the learner
should be able to:
- State precautions necessary when using fuels -Explain safety measures for different fuel types -Identify hazards associated with improper fuel handling -Apply safety principles to local situations |
Discuss safety precautions: ventilation for charcoal stoves (CO poisoning), not running engines in closed garages, proper gas cylinder storage, fuel storage away from populated areas, keeping away from fuel spills. Relate to local situations and accidents. Students identify potential hazards in their environment.
|
Safety guideline charts, examples of fuel accidents, local safety case studies
|
KLB Secondary Chemistry Form 4, Pages 57-58
|
|
| 10 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Endothermic and Exothermic Reactions
Bond Breaking, Formation and Phase Changes |
By the end of the
lesson, the learner
should be able to:
- Define endothermic and exothermic reactions using the ΔH notation -Investigate what happens when ammonium nitrate and sodium hydroxide are separately dissolved in water -Define enthalpy and enthalpy change -Calculate enthalpy changes using ΔH = H(products) - H(reactants) - Explain that energy changes are due to bond breaking and bond formation -Investigate energy changes when solids and liquids are heated -Define latent heat of fusion and vaporization -Calculate energy changes using bond energies |
Class experiment: Dissolve NH₄NO₃ and NaOH separately in water, record temperature changes in Table 2.1. Explain heat absorption vs evolution. Introduce enthalpy (H) and enthalpy change (ΔH). Calculate enthalpy changes from experimental data. Draw energy level diagrams showing relative energies.
Class experiment: Heat ice to melting then boiling, record temperature every minute. Plot heating curve. Explain constant temperature periods. Define latent heat of fusion/vaporization. Calculate energy changes in H₂ + Cl₂ → 2HCl using bond energies. Apply formula: ΔH = Energy absorbed - Energy released. |
250ml plastic beakers, tissue paper, NH₄NO₃, NaOH pellets, distilled water, thermometers, calculators
Ice, glass beakers, thermometers, heating source, graph paper, bond energy data tables |
KLB Secondary Chemistry Form 4, Pages 29-32
KLB Secondary Chemistry Form 4, Pages 32-36 |
|
| 10 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Determination of Enthalpy of Solution
|
By the end of the
lesson, the learner
should be able to:
- Carry out experiments to determine enthalpy changes of solution -Calculate enthalpy change using ΔH = mcΔT -Write correct thermochemical equations -Define molar heat of solution |
Class experiment: Dissolve exactly 2.0g NH₄NO₃ and 2.0g NaOH separately in 100ml water. Record temperature changes. Calculate enthalpy changes using ΔH = mcΔT. Calculate moles and molar heat of solution. Write thermochemical equations: NH₄NO₃(s) + aq → NH₄NO₃(aq) ΔH = +25.2 kJ mol⁻¹.
|
2.0g samples of NH₄NO₃ and NaOH, plastic beakers, thermometers, analytical balance, calculators
|
KLB Secondary Chemistry Form 4, Pages 36-39
|
|
| 10 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Definition of Reaction Rate and Collision Theory
|
By the end of the
lesson, the learner
should be able to:
- Define rate of reaction and explain the term activation energy -Describe collision theory and explain why not all collisions result in products -Draw energy diagrams showing activation energy -Explain how activation energy affects reaction rates |
Q/A: Compare speeds of different reactions (precipitation vs rusting). Define reaction rate as "measure of how much reactants are consumed or products formed per unit time." Introduce collision theory: particles must collide with minimum energy (activation energy) for successful reaction. Draw energy diagram showing activation energy barrier. Discuss factors affecting collision frequency and energy.
|
Examples of fast/slow reactions, energy diagram templates, chalk/markers for diagrams
|
KLB Secondary Chemistry Form 4, Pages 64-65
|
|
| 11 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Concentration on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of concentration on reaction rates -Investigate reaction of magnesium with different concentrations of sulphuric acid -Illustrate reaction rates graphically and interpret experimental data -Calculate concentrations and plot graphs of concentration vs time |
Class experiment: Label 4 conical flasks A-D. Add 40cm³ of 2M H₂SO₄ to A, dilute others with water (30+10, 20+20, 10+30 cm³). Drop 2cm magnesium ribbon into each, time complete dissolution. Record in Table 3.1. Calculate concentrations, plot graph. Explain: higher concentration → more collisions → faster reaction.
|
4 conical flasks, 2M H₂SO₄, distilled water, magnesium ribbon, stopwatch, measuring cylinders, graph paper
|
KLB Secondary Chemistry Form 4, Pages 65-67
|
|
| 11 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Change of Reaction Rate with Time
Effect of Temperature on Reaction Rate |
By the end of the
lesson, the learner
should be able to:
- Describe methods used to measure rate of reaction -Investigate how reaction rate changes as reaction proceeds -Plot graphs of volume of gas vs time -Calculate average rates at different time intervals - Explain the effect of temperature on reaction rates -Investigate temperature effects using sodium thiosulphate and HCl -Plot graphs of time vs temperature and 1/time vs temperature -Apply collision theory to explain temperature effects |
Class experiment: React 2cm magnesium ribbon with 100cm³ of 0.5M HCl in conical flask. Collect H₂ gas in graduated syringe as in Fig 3.4. Record gas volume every 30 seconds for 5 minutes in Table 3.2. Plot volume vs time graph. Calculate average rates between time intervals. Explain why rate decreases as reactants are consumed.
Class experiment: Place 30cm³ of 0.15M Na₂S₂O₃ in flasks at room temp, 30°C, 40°C, 50°C, 60°C. Mark cross on paper under flask. Add 5cm³ of 2M HCl, time until cross disappears. Record in Table 3.4. Plot time vs temperature and 1/time vs temperature graphs. Explain: higher temperature → more kinetic energy → more effective collisions. |
0.5M HCl, magnesium ribbon, conical flask, gas collection apparatus, graduated syringe, stopwatch, graph paper
0.15M Na₂S₂O₃, 2M HCl, conical flasks, water baths at different temperatures, paper with cross marked, stopwatch, thermometers |
KLB Secondary Chemistry Form 4, Pages 67-70
KLB Secondary Chemistry Form 4, Pages 70-73 |
|
| 11 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Surface Area on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of surface area on reaction rates -Investigate reaction of marble chips vs marble powder with HCl -Compare reaction rates using gas collection -Relate particle size to surface area and collision frequency |
Class experiment: React 2.5g marble chips with 50cm³ of 1M HCl, collect CO₂ gas using apparatus in Fig 3.10. Record gas volume every 30 seconds. Repeat with 2.5g marble powder. Record in Table 3.5. Plot both curves on same graph. Write equation: CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂. Explain: smaller particles → larger surface area → more collision sites → faster reaction.
|
Marble chips, marble powder, 1M HCl, gas collection apparatus, balance, conical flasks, measuring cylinders, graph paper
|
KLB Secondary Chemistry Form 4, Pages 73-76
|
|
| 11 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Catalysts on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain effects of suitable catalysts on reaction rates -Investigate decomposition of hydrogen peroxide with and without catalyst -Define catalyst and explain how catalysts work -Compare activation energies in catalyzed vs uncatalyzed reactions |
Class experiment: Decompose 5cm³ of 20-volume H₂O₂ in 45cm³ water without catalyst, collect O₂ gas. Repeat adding 2g MnO₂ powder. Record gas volumes as in Fig 3.12. Compare rates and final mass of MnO₂. Write equation: 2H₂O₂ → 2H₂O + O₂. Define catalyst and explain how it lowers activation energy. Show energy diagrams for both pathways.
|
20-volume H₂O₂, MnO₂ powder, gas collection apparatus, balance, conical flasks, filter paper, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 76-78
|
|
| 12 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Light and Pressure on Reaction Rate
Reversible Reactions |
By the end of the
lesson, the learner
should be able to:
- Identify reactions affected by light -Investigate effect of light on silver bromide decomposition -Explain effect of pressure on gaseous reactions -Give examples of photochemical reactions |
Teacher demonstration: Mix KBr and AgNO₃ solutions to form AgBr precipitate. Divide into 3 test tubes: place one in dark cupboard, one on bench, one in direct sunlight. Observe color changes after 10 minutes. Write equations. Discuss photochemical reactions: photography, Cl₂ + H₂, photosynthesis. Explain pressure effects on gaseous reactions through compression.
|
0.1M KBr, 0.05M AgNO₃, test tubes, dark cupboard, direct light source, examples of photochemical reactions
CuSO₄·5H₂O crystals, boiling tubes, delivery tube, heating source, test tube holder |
KLB Secondary Chemistry Form 4, Pages 78-80
|
|
| 12 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Chemical Equilibrium
Le Chatelier's Principle and Effect of Concentration |
By the end of the
lesson, the learner
should be able to:
- Explain chemical equilibrium -Define dynamic equilibrium -Investigate acid-base equilibrium using indicators -Explain why equilibrium appears static but is actually dynamic - State Le Chatelier's Principle -Explain effect of concentration changes on equilibrium position -Investigate bromine water equilibrium with acid/base addition -Apply Le Chatelier's Principle to predict equilibrium shifts |
Experiment: Add 0.5M NaOH to 2cm³ in boiling tube with universal indicator. Add 0.5M HCl dropwise until green color (neutralization point). Continue adding base then acid alternately, observe color changes. Explain equilibrium as state where forward and backward reaction rates are equal. Use NH₄Cl ⇌ NH₃ + HCl example to show dynamic nature. Introduce equilibrium symbol ⇌.
Experiment: Add 2M NaOH dropwise to 20cm³ bromine water until colorless. Then add 2M HCl until excess, observe color return. Write equation: Br₂ + H₂O ⇌ HBr + HBrO. Explain Le Chatelier's Principle: "When change applied to system at equilibrium, system moves to oppose that change." Demonstrate with chromate/dichromate equilibrium: CrO₄²⁻ + H⁺ ⇌ Cr₂O₇²⁻ + H₂O. |
0.5M NaOH, 0.5M HCl, universal indicator, boiling tubes, droppers, examples of equilibrium systems
Bromine water, 2M NaOH, 2M HCl, beakers, chromate/dichromate solutions for demonstration |
KLB Secondary Chemistry Form 4, Pages 80-82
KLB Secondary Chemistry Form 4, Pages 82-84 |
|
| 12 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Pressure and Temperature on Equilibrium
|
By the end of the
lesson, the learner
should be able to:
- Explain effect of pressure changes on equilibrium -Explain effect of temperature changes on equilibrium -Investigate NO₂/N₂O₄ equilibrium with temperature -Apply Le Chatelier's Principle to industrial processes |
Teacher demonstration: React copper turnings with concentrated HNO₃ to produce NO₂ gas in test tube. Heat and cool the tube, observe color changes: brown ⇌ pale yellow representing 2NO₂ ⇌ N₂O₄. Explain pressure effects using molecule count. Show Table 3.7 with pressure effects. Discuss temperature effects: heating favors endothermic direction, cooling favors exothermic direction. Use Table 3.8.
|
Copper turnings, concentrated HNO₃, test tubes, heating source, ice bath, gas collection apparatus, safety equipment
|
KLB Secondary Chemistry Form 4, Pages 84-87
|
|
| 12 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Industrial Applications - Haber Process
Industrial Applications - Contact Process |
By the end of the
lesson, the learner
should be able to:
- Apply equilibrium principles to Haber Process -Explain optimum conditions for ammonia manufacture -Calculate effect of temperature and pressure on yield -Explain role of catalysts in industrial processes |
Analyze Haber Process: N₂ + 3H₂ ⇌ 2NH₃ ΔH = -92 kJ/mol. Apply Le Chatelier's Principle: high pressure favors forward reaction (4 molecules → 2 molecules), low temperature favors exothermic forward reaction but slows rate. Explain optimum conditions: 450°C temperature, 200 atmospheres pressure, iron catalyst. Discuss removal of NH₃ to shift equilibrium right. Economic considerations.
|
Haber Process flow diagram, equilibrium data showing temperature/pressure effects on NH₃ yield, industrial catalyst information
Contact Process flow diagram, comparison table with Haber Process, catalyst effectiveness data |
KLB Secondary Chemistry Form 4, Pages 87-89
|
|
| 13-14 |
End term Assessment and closing |
|||||||
Your Name Comes Here