Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
GAS LAWS
Boyle's Law - Introduction and Experimental Investigation
Boyle's Law - Mathematical Expression and Graphical Representation
By the end of the lesson, the learner should be able to:
State Boyle's law
Explain Boyle's law using kinetic theory of matter
Investigate the relationship between pressure and volume of a fixed mass of gas
Plot graphs to illustrate Boyle's law
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
Graph papers, Scientific calculators, Chart showing mathematical expressions
KLB Secondary Chemistry Form 3, Pages 1-3
1

Reporting back to school

1 4
GAS LAWS
Boyle's Law - Numerical Problems and Applications
Charles's Law - Introduction and Temperature Scales
Charles's Law - Experimental Investigation and Mathematical Expression
Charles's Law - Numerical Problems and Applications
By the end of the lesson, the learner should be able to:
Solve numerical problems involving Boyle's law
Convert between different pressure units
Apply Boyle's law to real-life situations
Calculate volumes and pressures using P₁V₁ = P₂V₂
Worked examples: Demonstrate step-by-step problem solving. Supervised practice: Students solve problems involving pressure and volume calculations. Convert units (mmHg, atm, Pa). Discuss applications in tire inflation, aerosol cans. Assignment: Additional practice problems.
Scientific calculators, Worked example charts, Unit conversion tables
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
Scientific calculators, Temperature conversion charts, Application examples
KLB Secondary Chemistry Form 3, Pages 4-5
1 5
GAS LAWS
Combined Gas Law and Standard Conditions
Introduction to Diffusion - Experimental Investigation
Rates of Diffusion - Comparative Study
Graham's Law of Diffusion - Theory and Mathematical Expression
By the end of the lesson, the learner should be able to:
Derive the combined gas law equation
Apply PV/T = constant in problem solving
Define standard temperature and pressure (s.t.p)
Define room temperature and pressure (r.t.p)
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations.
Scientific calculators, Combined law derivation charts, Standard conditions reference table
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
Graham's law charts, Molecular mass tables, Mathematical derivation displays
KLB Secondary Chemistry Form 3, Pages 12-14
2

Opener Exams

3 1
GAS LAWS
THE MOLE
Graham's Law - Numerical Applications and Problem Solving
Relative Mass - Introduction and Experimental Investigation
By the end of the lesson, the learner should be able to:
Solve numerical problems using Graham's law
Calculate relative rates of diffusion
Determine molecular masses from diffusion data
Compare diffusion times for equal volumes of gases
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
Scientific calculators, Worked example charts, Molecular mass reference tables
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
KLB Secondary Chemistry Form 3, Pages 20-22
3 2
THE MOLE
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements
By the end of the lesson, the learner should be able to:
Define Avogadro's constant and its value
Explain the concept of a mole as a counting unit
Relate molar mass to relative atomic mass
Calculate number of atoms in given masses of elements
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles
KLB Secondary Chemistry Form 3, Pages 27-30
3 3-4
THE MOLE
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method
Empirical Formula - Percentage Composition Method
Molecular Formula - Determination from Empirical Formula
By the end of the lesson, the learner should be able to:
Distinguish between atoms and molecules
Define relative molecular mass
Calculate moles of molecules from given mass
Determine number of atoms in molecular compounds
Calculate empirical formula from percentage composition
Convert percentages to moles
Determine simplest whole number ratios
Apply method to various compounds
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
Scientific calculators, Percentage composition charts, Worked example displays
Scientific calculators, Molecular mass charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 29-30
KLB Secondary Chemistry Form 3, Pages 37-38
3 5
THE MOLE
Molecular Formula - Combustion Analysis
Concentration and Molarity of Solutions
By the end of the lesson, the learner should be able to:
Determine molecular formula from combustion data
Calculate moles of products in combustion
Relate product moles to reactant composition
Apply combustion analysis to hydrocarbons
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
Scientific calculators, Molarity charts, Various salt samples for demonstration
KLB Secondary Chemistry Form 3, Pages 40-41
4 1
THE MOLE
Preparation of Molar Solutions
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations
By the end of the lesson, the learner should be able to:
Describe procedure for preparing molar solutions
Use volumetric flasks correctly
Calculate masses needed for specific molarities
Prepare standard solutions accurately
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
KLB Secondary Chemistry Form 3, Pages 43-46
4 2
THE MOLE
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions
By the end of the lesson, the learner should be able to:
Investigate stoichiometry of precipitation reactions
Determine mole ratios from volume measurements
Write ionic equations for precipitation
Analyze limiting and excess reagents
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
KLB Secondary Chemistry Form 3, Pages 53-56
4 3-4
THE MOLE
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization
Titration - Diprotic Acids
Standardization of Solutions
Back Titration Method
By the end of the lesson, the learner should be able to:
Define volumetric analysis and titration
Identify and use titration apparatus correctly
Explain functions of pipettes and burettes
Demonstrate proper reading techniques
Investigate titrations involving diprotic acids
Determine basicity of acids from titration data
Compare volumes needed for mono- and diprotic acids
Write equations for diprotic acid reactions
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
KLB Secondary Chemistry Form 3, Pages 58-59
KLB Secondary Chemistry Form 3, Pages 62-65
4 5
THE MOLE
Redox Titrations - Principles
Redox Titrations - KMnO₄ Standardization
By the end of the lesson, the learner should be able to:
Explain principles of redox titrations
Identify color changes in redox reactions
Understand self-indicating nature of some redox reactions
Write ionic equations for redox processes
Teacher exposition: Redox titration principles. Demonstrate color changes: MnO₄⁻ (purple) → Mn²⁺ (colorless), Cr₂O₇²⁻ (orange) → Cr³⁺ (green). Discussion: Self-indicating reactions. Write half-equations and overall ionic equations.
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
KLB Secondary Chemistry Form 3, Pages 68-70
5 1
THE MOLE
Water of Crystallization Determination
Atomicity and Molar Gas Volume
By the end of the lesson, the learner should be able to:
Determine water of crystallization in hydrated salts
Use redox titration to find formula of hydrated salt
Calculate value of 'n' in crystallization formulas
Apply analytical data to determine complete formulas
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
KLB Secondary Chemistry Form 3, Pages 72-73
5 2
THE MOLE
NITROGEN AND ITS COMPOUNDS
Combining Volumes of Gases - Experimental Investigation
Gas Laws and Chemical Equations
Introduction to Nitrogen - Properties and Occurrence
By the end of the lesson, the learner should be able to:
Investigate Gay-Lussac's law experimentally
Measure combining volumes of reacting gases
Determine simple whole number ratios
Write equations from volume relationships
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
Scientific calculators, Gas law charts, Volume ratio examples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
KLB Secondary Chemistry Form 3, Pages 75-77
5 3-4
NITROGEN AND ITS COMPOUNDS
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Describe physical properties of nitrogen
Explain chemical inertness of nitrogen
Describe reactions at high temperatures
List industrial uses of nitrogen
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
KLB Secondary Chemistry Form 3, Pages 119-121
KLB Secondary Chemistry Form 3, Pages 121-123
5 5
NITROGEN AND ITS COMPOUNDS
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects
By the end of the lesson, the learner should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid
Observe colorless gas and brown fumes formation
Test reactions with air and iron(II) sulfate
Explain oxidation in air to NO₂
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
KLB Secondary Chemistry Form 3, Pages 125-127
6-7

Midterm Exam

7 5
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility
By the end of the lesson, the learner should be able to:
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
KLB Secondary Chemistry Form 3, Pages 131-134
8

Midterm Break

9 1
NITROGEN AND ITS COMPOUNDS
Reactions of Aqueous Ammonia with Metal Ions
Chemical Properties of Ammonia - Reactions with Acids and Combustion
By the end of the lesson, the learner should be able to:
Test reactions of aqueous ammonia with various metal ions
Observe precipitate formation and dissolution
Explain complex ion formation
Use reactions for metal ion identification
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
KLB Secondary Chemistry Form 3, Pages 136-138
9 2
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Ammonia - The Haber Process
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
By the end of the lesson, the learner should be able to:
Describe raw materials and their sources
Explain optimum conditions for ammonia synthesis
Draw flow diagram of Haber process
Explain economic considerations and catalyst use
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
KLB Secondary Chemistry Form 3, Pages 140-141
9 3-4
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitric(V) Acid
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
By the end of the lesson, the learner should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Test reactions with various metals
Explain absence of hydrogen gas production
Observe formation of nitrogen oxides
Write equations for metal-acid reactions
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
KLB Secondary Chemistry Form 3, Pages 144-145
KLB Secondary Chemistry Form 3, Pages 147-150
9 5
NITROGEN AND ITS COMPOUNDS
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates
Action of Heat on Nitrates - Decomposition Patterns
By the end of the lesson, the learner should be able to:
Demonstrate strong oxidizing properties
Test reactions with FeSO₄, sulfur, and copper
Observe formation of nitrogen dioxide
Explain electron transfer in oxidation
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
KLB Secondary Chemistry Form 3, Pages 150-151
10 1
NITROGEN AND ITS COMPOUNDS
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Perform brown ring test for nitrates
Explain mechanism of complex formation
Use alternative copper test method
Apply tests to unknown samples
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
KLB Secondary Chemistry Form 3, Pages 153-154
10 2
NITROGEN AND ITS COMPOUNDS
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry
By the end of the lesson, the learner should be able to:
Analyze methods to reduce nitrogen pollution
Design pollution control strategies
Evaluate effectiveness of current measures
Propose new solutions for environmental protection
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
KLB Secondary Chemistry Form 3, Pages 154-157
10 3-4
NITROGEN AND ITS COMPOUNDS
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
Laboratory Practical Assessment - Nitrogen Compounds
Industrial Applications and Economic Importance
Chapter Review and Integration
Extraction of Sulphur
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat
By the end of the lesson, the learner should be able to:
Demonstrate practical skills in nitrogen chemistry
Perform qualitative analysis of nitrogen compounds
Apply safety procedures correctly
Interpret experimental observations accurately
Synthesize all nitrogen chemistry concepts
Compare preparation methods for nitrogen compounds
Relate structure to properties and reactivity
Connect laboratory and industrial processes
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
KLB Secondary Chemistry Form 3, Pages 119-157
10 5
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the reaction of sulphur with oxygen. Investigate the reaction of sulphur with metals. Write balanced equations for reactions of sulphur. Explain the formation of sulphides.
Practical work: Experiment 3(a) - Burning sulphur in oxygen using deflagrating spoon. Testing with moist litmus paper. Practical work: Heating mixtures of sulphur with iron powder and copper powder. Observation: Exothermic reactions and color changes. Writing equations: Fe + S → FeS, 2Cu + S → Cu2S.
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
KLB Secondary Chemistry Form 4, Pages 165-167
11 1
SULPHUR AND ITS COMPOUNDS
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing.
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
KLB Secondary Chemistry Form 4, Pages 173
11 2
SULPHUR AND ITS COMPOUNDS
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 176-177
11 3-4
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
KLB Secondary Chemistry Form 4, Pages 179-181
KLB Secondary Chemistry Form 4, Pages 184
11 5
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates.
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
KLB Secondary Chemistry Form 4, Pages 185-186
12 1
SULPHUR AND ITS COMPOUNDS
Hydrogen Sulphide - Preparation and Physical Properties
Chemical Properties of Hydrogen Sulphide
Pollution Effects and Summary
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
KLB Secondary Chemistry Form 4, Pages 187-188
12 2
CHLORINE AND ITS COMPOUNDS
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
By the end of the lesson, the learner should be able to:
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation.
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
KLB Secondary Chemistry Form 4, Pages 195-196
12 3-4
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
Test for Chloride Ions
Uses of Chlorine and its Compounds
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions.
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 201
KLB Secondary Chemistry Form 4, Pages 205-207
12 5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 208-211
13

End of term 1 exams

13

Closing of school


Your Name Comes Here


Download

Feedback