Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
CARBON AND SOME OF ITS COMPOUNDS.
Reaction of carbon with acids. Preparation of CO2.
Properties of CO2.
By the end of the lesson, the learner should be able to:
Describe reaction of carbon with acids.




Prepare CO2 in the lab.
Teacher demonstration- reaction of carbon with hot conc HNO3.
Write balanced equations for the reaction.

Review effects of heat on carbonates.
Group experiments/teacher demonstration- preparation of CO2.
Conc. HNO3, limewater.
Lime water,
Magnesium ribbon,
Universal indicator,
lit candle.
K.L.B. BOOK II P.126
1 2
CARBON AND SOME OF ITS COMPOUNDS.
Chemical equations for reactions involving CO2.
Uses of CO2.
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide.
By the end of the lesson, the learner should be able to:
Write balanced CO2.
Give examples of reactions. Write corresponding balanced chemical equations.
text book
K.L.B. BOOK II PP.139-140
1 3
CARBON AND SOME OF ITS COMPOUNDS.
Carbonates and hydrogen carbonates.
Heating carbonates and hydrogen carbonates.
Extraction of sodium carbonate from trona.
Solvay process of preparing sodium carbonate.
By the end of the lesson, the learner should be able to:
To write chemical equations for reactions of carbonates and hydrogen carbonates with acids.
Discuss the observations above.
Write chemical equations for the reactions.
text book
text book, chart
K.L.B. BOOK II
1 4-5
CARBON AND SOME OF ITS COMPOUNDS.
THE MOLE
Importance of carbon in nature. & its effects on the environment.
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements
By the end of the lesson, the learner should be able to:
To discuss: - Importance of carbon in nature.
&
Effects of carbon on the environment.
Define Avogadro's constant and its value
Explain the concept of a mole as a counting unit
Relate molar mass to relative atomic mass
Calculate number of atoms in given masses of elements
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers.
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
text book
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles
K.L.B. BOOK II PP.157-158
KLB Secondary Chemistry Form 3, Pages 27-30
2 1
THE MOLE
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination
By the end of the lesson, the learner should be able to:
Distinguish between atoms and molecules
Define relative molecular mass
Calculate moles of molecules from given mass
Determine number of atoms in molecular compounds
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
KLB Secondary Chemistry Form 3, Pages 29-30
2 2
THE MOLE
Empirical Formula - Reduction Method
Empirical Formula - Percentage Composition Method
By the end of the lesson, the learner should be able to:
Determine empirical formula using reduction reactions
Calculate empirical formula from reduction data
Apply reduction method to copper oxides
Analyze experimental errors and sources
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions.
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
Scientific calculators, Percentage composition charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 35-37
2 3
THE MOLE
Molecular Formula - Determination from Empirical Formula
Molecular Formula - Combustion Analysis
By the end of the lesson, the learner should be able to:
Define molecular formula
Relate molecular formula to empirical formula
Calculate molecular formula using molecular mass
Apply the relationship (empirical formula)ₙ = molecular formula
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
Scientific calculators, Molecular mass charts, Worked example displays
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
KLB Secondary Chemistry Form 3, Pages 38-40
2 4-5
THE MOLE
Concentration and Molarity of Solutions
Preparation of Molar Solutions
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations
By the end of the lesson, the learner should be able to:
Define concentration and molarity of solutions
Calculate molarity from mass and volume data
Convert between different concentration units
Apply molarity calculations to various solutions
Define dilution process
Apply dilution formula M₁V₁ = M₂V₂
Calculate concentrations after dilution
Prepare dilute solutions from concentrated ones
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
Scientific calculators, Molarity charts, Various salt samples for demonstration
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
KLB Secondary Chemistry Form 3, Pages 41-43
KLB Secondary Chemistry Form 3, Pages 46-50
3 1
THE MOLE
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions
By the end of the lesson, the learner should be able to:
Investigate stoichiometry of precipitation reactions
Determine mole ratios from volume measurements
Write ionic equations for precipitation
Analyze limiting and excess reagents
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
KLB Secondary Chemistry Form 3, Pages 53-56
3 2
THE MOLE
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization
By the end of the lesson, the learner should be able to:
Define volumetric analysis and titration
Identify and use titration apparatus correctly
Explain functions of pipettes and burettes
Demonstrate proper reading techniques
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
KLB Secondary Chemistry Form 3, Pages 58-59
3 3
THE MOLE
Titration - Diprotic Acids
Standardization of Solutions
By the end of the lesson, the learner should be able to:
Investigate titrations involving diprotic acids
Determine basicity of acids from titration data
Compare volumes needed for mono- and diprotic acids
Write equations for diprotic acid reactions
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
KLB Secondary Chemistry Form 3, Pages 62-65
3 4-5
THE MOLE
Back Titration Method
Redox Titrations - Principles
Redox Titrations - KMnO₄ Standardization
Water of Crystallization Determination
By the end of the lesson, the learner should be able to:
Understand principle of back titration
Apply back titration to determine composition
Calculate concentrations using back titration data
Determine atomic masses from back titration
Standardize KMnO₄ solution using iron(II) salt
Calculate molarity from redox titration data
Apply 1:5 mole ratio in calculations
Prepare solutions for redox titrations
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
KLB Secondary Chemistry Form 3, Pages 67-70
KLB Secondary Chemistry Form 3, Pages 70-72
4 1
THE MOLE
Atomicity and Molar Gas Volume
Combining Volumes of Gases - Experimental Investigation
By the end of the lesson, the learner should be able to:
Define atomicity of gaseous elements
Classify gases as monoatomic, diatomic, or triatomic
Determine molar gas volume experimentally
Calculate gas densities and molar masses
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
KLB Secondary Chemistry Form 3, Pages 73-75
4 2
THE MOLE
NITROGEN AND ITS COMPOUNDS
Gas Laws and Chemical Equations
Introduction to Nitrogen - Properties and Occurrence
By the end of the lesson, the learner should be able to:
Apply Avogadro's law to chemical reactions
Use volume ratios to determine chemical equations
Calculate product volumes from reactant volumes
Solve problems involving gas stoichiometry
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
Scientific calculators, Gas law charts, Volume ratio examples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
KLB Secondary Chemistry Form 3, Pages 77-79
4

CAT ONE

5 1
NITROGEN AND ITS COMPOUNDS
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
Laboratory Preparation of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
KLB Secondary Chemistry Form 3, Pages 119-121
5 2
NITROGEN AND ITS COMPOUNDS
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Describe physical properties of nitrogen
Explain chemical inertness of nitrogen
Describe reactions at high temperatures
List industrial uses of nitrogen
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
KLB Secondary Chemistry Form 3, Pages 121-123
5 3
NITROGEN AND ITS COMPOUNDS
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid
Observe colorless gas and brown fumes formation
Test reactions with air and iron(II) sulfate
Explain oxidation in air to NO₂
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
KLB Secondary Chemistry Form 3, Pages 125-127
5 4-5
NITROGEN AND ITS COMPOUNDS
Comparison of Nitrogen Oxides and Environmental Effects
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility
Reactions of Aqueous Ammonia with Metal Ions
By the end of the lesson, the learner should be able to:
Compare preparation methods of nitrogen oxides
Distinguish between different nitrogen oxides
Explain formation in vehicle engines
Describe environmental pollution effects
Prepare aqueous ammonia solution
Demonstrate high solubility using fountain experiment
Explain alkaline properties of aqueous ammonia
Write equations for ammonia in water
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
KLB Secondary Chemistry Form 3, Pages 123-131
KLB Secondary Chemistry Form 3, Pages 134-136
6 1
NITROGEN AND ITS COMPOUNDS
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process
By the end of the lesson, the learner should be able to:
Test neutralization reactions with acids
Investigate combustion of ammonia
Examine catalytic oxidation with platinum
Study reducing properties with metal oxides
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
KLB Secondary Chemistry Form 3, Pages 138-140
6 2
NITROGEN AND ITS COMPOUNDS
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
By the end of the lesson, the learner should be able to:
List major uses of ammonia
Explain importance as fertilizer
Calculate nitrogen percentages in fertilizers
Compare different nitrogenous fertilizers
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
KLB Secondary Chemistry Form 3, Pages 141-144
6 3
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitric(V) Acid
Industrial Manufacture of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
KLB Secondary Chemistry Form 3, Pages 144-145
6 4-5
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Metals
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates
By the end of the lesson, the learner should be able to:
Test reactions with various metals
Explain absence of hydrogen gas production
Observe formation of nitrogen oxides
Write equations for metal-acid reactions
Demonstrate strong oxidizing properties
Test reactions with FeSO₄, sulfur, and copper
Observe formation of nitrogen dioxide
Explain electron transfer in oxidation
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
KLB Secondary Chemistry Form 3, Pages 147-150
KLB Secondary Chemistry Form 3, Pages 150-151
7 1
NITROGEN AND ITS COMPOUNDS
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test
By the end of the lesson, the learner should be able to:
Test thermal decomposition of different nitrates
Classify decomposition patterns based on metal reactivity
Identify products formed on heating
Write equations for decomposition reactions
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
KLB Secondary Chemistry Form 3, Pages 151-153
7 2
NITROGEN AND ITS COMPOUNDS
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions
By the end of the lesson, the learner should be able to:
Explain sources of nitrogen pollution
Describe formation of acid rain
Discuss effects on environment and health
Evaluate pollution control measures
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
KLB Secondary Chemistry Form 3, Pages 154-157
7 3
NITROGEN AND ITS COMPOUNDS
Comprehensive Problem Solving - Nitrogen Chemistry
Laboratory Practical Assessment - Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Solve complex problems involving nitrogen compounds
Apply knowledge to industrial processes
Calculate yields and percentages in reactions
Analyze experimental data and results
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
KLB Secondary Chemistry Form 3, Pages 119-157
7 4-5
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
Industrial Applications and Economic Importance
Chapter Review and Integration
Extraction of Sulphur
Allotropes of Sulphur
By the end of the lesson, the learner should be able to:
Evaluate economic importance of nitrogen industry
Analyze industrial production costs and benefits
Compare different manufacturing processes
Assess impact on agricultural productivity
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process.
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
KLB Secondary Chemistry Form 3, Pages 119-157
KLB Secondary Chemistry Form 4, Pages 160-161
8 1
SULPHUR AND ITS COMPOUNDS
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat
By the end of the lesson, the learner should be able to:
Investigate the solubility of sulphur in different solvents. Explain the molecular structure of sulphur. Compare solubility in polar and non-polar solvents. State the physical properties of sulphur.
Practical work: Experiment 2(a) - Testing solubility of sulphur in water, benzene, methylbenzene, and carbon(IV) sulphide. Observation and recording in Table Discussion: Explain why sulphur dissolves in organic solvents but not water. Drawing: Puckered ring structure of S8 molecule.
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
KLB Secondary Chemistry Form 4, Pages 163-164
8 2
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
By the end of the lesson, the learner should be able to:
Investigate the reaction of sulphur with oxygen. Investigate the reaction of sulphur with metals. Write balanced equations for reactions of sulphur. Explain the formation of sulphides.
Practical work: Experiment 3(a) - Burning sulphur in oxygen using deflagrating spoon. Testing with moist litmus paper. Practical work: Heating mixtures of sulphur with iron powder and copper powder. Observation: Exothermic reactions and color changes. Writing equations: Fe + S → FeS, 2Cu + S → Cu2S.
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 4, Pages 165-167
8

CAT TWO

9 1
SULPHUR AND ITS COMPOUNDS
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides.
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
KLB Secondary Chemistry Form 4, Pages 168-170
9 2
SULPHUR AND ITS COMPOUNDS
Physical and Chemical Properties of Sulphur(IV) Oxide
Bleaching Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the physical properties of SO2 gas. Test the solubility and acidity of SO Write equations for formation of sulphurous acid. Identify the acidic nature of SO
Practical work: Experiment 5 - Testing color, smell, solubility in water. Testing with dry and moist litmus papers. Universal indicator tests with water and NaOH. Formation of normal and acid salts. Recording observations in Table Safety: Proper ventilation due to toxic nature.
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
KLB Secondary Chemistry Form 4, Pages 171-173
9 3
SULPHUR AND ITS COMPOUNDS
Reducing Action of Sulphur(IV) Oxide
Oxidising Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions.
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
KLB Secondary Chemistry Form 4, Pages 173-176
9 4-5
SULPHUR AND ITS COMPOUNDS
Test for Sulphate and Sulphite Ions & Uses of SO2
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry.
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid.
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 178-179
KLB Secondary Chemistry Form 4, Pages 181-183
10 1
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals
By the end of the lesson, the learner should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions.
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
KLB Secondary Chemistry Form 4, Pages 184
10 2
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates.
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
KLB Secondary Chemistry Form 4, Pages 185-186
10 3
SULPHUR AND ITS COMPOUNDS
Hydrogen Sulphide - Preparation and Physical Properties
Chemical Properties of Hydrogen Sulphide
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
KLB Secondary Chemistry Form 4, Pages 187-188
10 4-5
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Pollution Effects and Summary
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
By the end of the lesson, the learner should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry.
Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas.
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery.
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
KLB Secondary Chemistry Form 4, Pages 190-194
KLB Secondary Chemistry Form 4, Pages 196-197
11 1
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with metals. Write balanced equations for metal-chlorine reactions. Explain the formation of metal chlorides. Demonstrate exothermic nature of these reactions.
Practical work: Experiment 6.4 - Reactions with burning magnesium, hot iron wire, dry chlorine over hot iron coil (Figure 6.2). Recording observations in Table 6. Observations: White fumes (MgCl2), glowing iron wire, black crystals (FeCl3). Discussion: Formation of higher oxidation state chlorides. Safety: Proper ventilation and eye protection.
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
KLB Secondary Chemistry Form 4, Pages 199-201
11 2
CHLORINE AND ITS COMPOUNDS
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
By the end of the lesson, the learner should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions.
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
KLB Secondary Chemistry Form 4, Pages 201-202
11 3
CHLORINE AND ITS COMPOUNDS
Oxidising Properties - Displacement Reactions
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Investigate displacement reactions of chlorine with halides. Test reactions with bromides and iodides. Write ionic equations for displacement reactions. Explain the order of reactivity of halogens.
Practical work: Experiment 6.8 - Bubbling chlorine through potassium bromide and potassium iodide solutions. Observations: Colorless to orange (Br2), colorless to brown (I2). Writing ionic equations: Cl2 + 2Br⁻ → 2Cl⁻ + Br2, Cl2 + 2I⁻ → 2Cl⁻ + I Discussion: Displacement as evidence of relative reactivity.
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 203-204
11 4-5
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
KLB Secondary Chemistry Form 4, Pages 205-207
KLB Secondary Chemistry Form 4, Pages 208-211
12

END OF TERM EXAMINATION

13

MARKING AND CLOSING

14 1
CHLORINE AND ITS COMPOUNDS
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
List the industrial uses of hydrochloric acid. Explain applications in metal treatment. Describe use in water treatment and manufacturing. Relate acid properties to industrial applications.
Discussion: Applications - rust removal and descaling, galvanizing preparation, electroplating preparation, water treatment (chlorination), sewage treatment. Manufacturing uses: dyes, drugs, photographic materials (AgCl), pH control in industries. Q/A: How acid properties make HCl suitable for these uses. Case studies: Metal cleaning processes, water purification systems.
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 212-213

Your Name Comes Here


Download

Feedback