If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 5 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
|
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 2 | 1 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil |
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes |
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 2 | 2 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
|
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
|
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
|
KLB Secondary Chemistry Form 3, Pages 89-90
|
|
| 2 | 3 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
|
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
|
Alkane series chart, Molecular formula worksheets, Periodic table
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 2 | 4-5 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers Laboratory Preparation of Methane |
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection. |
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints |
KLB Secondary Chemistry Form 3, Pages 90-92
KLB Secondary Chemistry Form 3, Pages 94-96 |
|
| 3 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
|
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 3 | 2 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
| 3 | 3 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
|
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
|
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
| 3 | 4-5 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
Nomenclature of Alkenes Isomerism in Alkenes - Branching and Positional |
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents. |
Alkene series charts, Molecular models showing double bonds, Functional group posters
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits Molecular model kits, Isomerism worksheets, Geometric isomer models |
KLB Secondary Chemistry Form 3, Pages 100-101
KLB Secondary Chemistry Form 3, Pages 101-102 |
|
| 4 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
|
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
| 4 | 2 |
ORGANIC CHEMISTRY I
|
Alternative Preparation of Ethene and Physical Properties
|
By the end of the
lesson, the learner
should be able to:
Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
|
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
|
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
| 4 | 3 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
|
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
|
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 105-107
|
|
| 4 | 4-5 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
Tests for Alkenes and Uses Introduction to Alkynes and Triple Bond |
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation. |
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts |
KLB Secondary Chemistry Form 3, Pages 107-108
KLB Secondary Chemistry Form 3, Pages 109-110 |
|
| 5 | 1 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
| 5 | 2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes |
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
|
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples |
KLB Secondary Chemistry Form 3, Pages 111-112
|
|
| 5 | 3 |
ORGANIC CHEMISTRY I
|
Addition Reactions of Alkynes and Chemical Tests
|
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
|
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
|
KLB Secondary Chemistry Form 3, Pages 113-115
|
|
| 5 | 4-5 |
ORGANIC CHEMISTRY I
NITROGEN AND ITS COMPOUNDS |
Uses of Alkynes and Industrial Applications
Introduction to Nitrogen - Properties and Occurrence Isolation of Nitrogen from Air - Industrial and Laboratory Methods |
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials Describe position of nitrogen in the periodic table State electron configuration of nitrogen Identify natural occurrence of nitrogen Explain why nitrogen exists as diatomic molecules |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength. |
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart |
KLB Secondary Chemistry Form 3, Pages 115-116
KLB Secondary Chemistry Form 3, Pages 119 |
|
| 6 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
|
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
| 6 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Properties and Uses of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of nitrogen Explain chemical inertness of nitrogen Describe reactions at high temperatures List industrial uses of nitrogen |
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
|
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
| 6 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate Test physical and chemical properties Explain decomposition and oxidizing properties Describe uses of nitrogen(I) oxide |
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
|
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents |
KLB Secondary Chemistry Form 3, Pages 123-125
|
|
| 6 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid Prepare from thermal decomposition of nitrates Test properties including equilibrium with N₂O₄ Describe reactions and uses Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide. |
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations |
KLB Secondary Chemistry Form 3, Pages 127-131
KLB Secondary Chemistry Form 3, Pages 123-131 |
|
| 7-8 |
Midterm |
|||||||
| 8 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility |
By the end of the
lesson, the learner
should be able to:
Prepare ammonia from ammonium salts and alkalis Set up apparatus with proper gas collection Test characteristic properties of ammonia Explain displacement reaction principle |
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
|
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper |
KLB Secondary Chemistry Form 3, Pages 131-134
|
|
| 8 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Aqueous Ammonia with Metal Ions
|
By the end of the
lesson, the learner
should be able to:
Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
|
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
|
KLB Secondary Chemistry Form 3, Pages 136-138
|
|
| 8 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process |
By the end of the
lesson, the learner
should be able to:
Test neutralization reactions with acids Investigate combustion of ammonia Examine catalytic oxidation with platinum Study reducing properties with metal oxides Describe raw materials and their sources Explain optimum conditions for ammonia synthesis Draw flow diagram of Haber process Explain economic considerations and catalyst use |
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate. |
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets |
KLB Secondary Chemistry Form 3, Pages 138-140
KLB Secondary Chemistry Form 3, Pages 140-141 |
|
| 9 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations |
By the end of the
lesson, the learner
should be able to:
List major uses of ammonia Explain importance as fertilizer Calculate nitrogen percentages in fertilizers Compare different nitrogenous fertilizers |
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
|
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data |
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
| 9 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid Set up all-glass apparatus safely Explain brown fumes and yellow color Purify nitric acid by air bubbling |
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
|
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 144-145
|
|
| 9 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
|
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
|
KLB Secondary Chemistry Form 3, Pages 145-147
|
|
| 9 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Dilute Nitric(V) Acid with Metals
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties |
By the end of the
lesson, the learner
should be able to:
Test reactions with various metals Explain absence of hydrogen gas production Observe formation of nitrogen oxides Write equations for metal-acid reactions Demonstrate strong oxidizing properties Test reactions with FeSO₄, sulfur, and copper Observe formation of nitrogen dioxide Explain electron transfer in oxidation |
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂. |
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 3, Pages 147-150
KLB Secondary Chemistry Form 3, Pages 150-151 |
|
| 10 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Nitric(V) Acid and Introduction to Nitrates
|
By the end of the
lesson, the learner
should be able to:
List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation |
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
|
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
|
KLB Secondary Chemistry Form 3, Pages 151
|
|
| 10 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test |
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples |
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
| 10 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
|
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
|
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
| 10 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry Laboratory Practical Assessment - Nitrogen Compounds |
By the end of the
lesson, the learner
should be able to:
Analyze methods to reduce nitrogen pollution Design pollution control strategies Evaluate effectiveness of current measures Propose new solutions for environmental protection Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts. |
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics |
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157 |
|
| 11 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Applications and Economic Importance
|
By the end of the
lesson, the learner
should be able to:
Evaluate economic importance of nitrogen industry Analyze industrial production costs and benefits Compare different manufacturing processes Assess impact on agricultural productivity |
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
|
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
| 11 | 2 |
NITROGEN AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS |
Chapter Review and Integration
Introduction and Preparation of Chlorine |
By the end of the
lesson, the learner
should be able to:
Synthesize all nitrogen chemistry concepts Compare preparation methods for nitrogen compounds Relate structure to properties and reactivity Connect laboratory and industrial processes |
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
|
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
| 11 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water |
By the end of the
lesson, the learner
should be able to:
Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas. |
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery.
|
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes |
KLB Secondary Chemistry Form 4, Pages 196-197
|
|
| 11 | 4-5 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals Oxidising Properties of Chlorine Reaction of Chlorine with Alkali Solutions Oxidising Properties - Displacement Reactions Test for Chloride Ions |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with metals. Write balanced equations for metal-chlorine reactions. Explain the formation of metal chlorides. Demonstrate exothermic nature of these reactions. Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder. |
Practical work: Experiment 6.4 - Reactions with burning magnesium, hot iron wire, dry chlorine over hot iron coil (Figure 6.2). Recording observations in Table 6. Observations: White fumes (MgCl2), glowing iron wire, black crystals (FeCl3). Discussion: Formation of higher oxidation state chlorides. Safety: Proper ventilation and eye protection.
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder. |
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 199-201
KLB Secondary Chemistry Form 4, Pages 202-203 |
|
| 12 | 1 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Chlorine and its Compounds
|
By the end of the
lesson, the learner
should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
|
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
|
KLB Secondary Chemistry Form 4, Pages 205-207
|
|
| 12 | 2 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
|
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
|
KLB Secondary Chemistry Form 4, Pages 207-208
|
|
| 12 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid |
By the end of the
lesson, the learner
should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents. |
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
|
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models |
KLB Secondary Chemistry Form 4, Pages 208-211
|
|
| 12 | 4-5 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary |
By the end of the
lesson, the learner
should be able to:
List the industrial uses of hydrochloric acid. Explain applications in metal treatment. Describe use in water treatment and manufacturing. Relate acid properties to industrial applications. Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry. |
Discussion: Applications - rust removal and descaling, galvanizing preparation, electroplating preparation, water treatment (chlorination), sewage treatment. Manufacturing uses: dyes, drugs, photographic materials (AgCl), pH control in industries. Q/A: How acid properties make HCl suitable for these uses. Case studies: Metal cleaning processes, water purification systems.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts. |
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions |
KLB Secondary Chemistry Form 4, Pages 212-213
KLB Secondary Chemistry Form 4, Pages 213-215 |
|
Your Name Comes Here