Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
GAS LAWS
Boyle's Law - Introduction and Experimental Investigation
Boyle's Law - Mathematical Expression and Graphical Representation
By the end of the lesson, the learner should be able to:
State Boyle's law
Explain Boyle's law using kinetic theory of matter
Investigate the relationship between pressure and volume of a fixed mass of gas
Plot graphs to illustrate Boyle's law
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
Graph papers, Scientific calculators, Chart showing mathematical expressions
KLB Secondary Chemistry Form 3, Pages 1-3
2 2
GAS LAWS
Boyle's Law - Numerical Problems and Applications
Charles's Law - Introduction and Temperature Scales
Charles's Law - Experimental Investigation and Mathematical Expression
Charles's Law - Numerical Problems and Applications
By the end of the lesson, the learner should be able to:
Solve numerical problems involving Boyle's law
Convert between different pressure units
Apply Boyle's law to real-life situations
Calculate volumes and pressures using P₁V₁ = P₂V₂
Worked examples: Demonstrate step-by-step problem solving. Supervised practice: Students solve problems involving pressure and volume calculations. Convert units (mmHg, atm, Pa). Discuss applications in tire inflation, aerosol cans. Assignment: Additional practice problems.
Scientific calculators, Worked example charts, Unit conversion tables
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
Scientific calculators, Temperature conversion charts, Application examples
KLB Secondary Chemistry Form 3, Pages 4-5
2 3
GAS LAWS
Combined Gas Law and Standard Conditions
Introduction to Diffusion - Experimental Investigation
Rates of Diffusion - Comparative Study
By the end of the lesson, the learner should be able to:
Derive the combined gas law equation
Apply PV/T = constant in problem solving
Define standard temperature and pressure (s.t.p)
Define room temperature and pressure (r.t.p)
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations.
Scientific calculators, Combined law derivation charts, Standard conditions reference table
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
KLB Secondary Chemistry Form 3, Pages 12-14
2 4
GAS LAWS
Graham's Law of Diffusion - Theory and Mathematical Expression
Graham's Law - Numerical Applications and Problem Solving
By the end of the lesson, the learner should be able to:
State Graham's law of diffusion
Express Graham's law mathematically
Relate diffusion rate to molecular mass and density
Explain the inverse relationship between rate and √molecular mass
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses.
Graham's law charts, Molecular mass tables, Mathematical derivation displays
Scientific calculators, Worked example charts, Molecular mass reference tables
KLB Secondary Chemistry Form 3, Pages 18-20
2 5
THE MOLE
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements
By the end of the lesson, the learner should be able to:
Define relative mass using practical examples
Compare masses of different objects using a reference standard
Explain the concept of relative atomic mass
Identify carbon-12 as the reference standard
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles
KLB Secondary Chemistry Form 3, Pages 25-27
3 1
THE MOLE
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination
By the end of the lesson, the learner should be able to:
Distinguish between atoms and molecules
Define relative molecular mass
Calculate moles of molecules from given mass
Determine number of atoms in molecular compounds
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
KLB Secondary Chemistry Form 3, Pages 29-30
3 2
THE MOLE
Empirical Formula - Reduction Method
Empirical Formula - Percentage Composition Method
By the end of the lesson, the learner should be able to:
Determine empirical formula using reduction reactions
Calculate empirical formula from reduction data
Apply reduction method to copper oxides
Analyze experimental errors and sources
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions.
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
Scientific calculators, Percentage composition charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 35-37
3 3
THE MOLE
Molecular Formula - Determination from Empirical Formula
Molecular Formula - Combustion Analysis
By the end of the lesson, the learner should be able to:
Define molecular formula
Relate molecular formula to empirical formula
Calculate molecular formula using molecular mass
Apply the relationship (empirical formula)ₙ = molecular formula
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
Scientific calculators, Molecular mass charts, Worked example displays
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
KLB Secondary Chemistry Form 3, Pages 38-40
3 4
THE MOLE
Concentration and Molarity of Solutions
Preparation of Molar Solutions
By the end of the lesson, the learner should be able to:
Define concentration and molarity of solutions
Calculate molarity from mass and volume data
Convert between different concentration units
Apply molarity calculations to various solutions
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
Scientific calculators, Molarity charts, Various salt samples for demonstration
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
KLB Secondary Chemistry Form 3, Pages 41-43
3 5
THE MOLE
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations
By the end of the lesson, the learner should be able to:
Define dilution process
Apply dilution formula M₁V₁ = M₂V₂
Calculate concentrations after dilution
Prepare dilute solutions from concentrated ones
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
KLB Secondary Chemistry Form 3, Pages 46-50
4 1
THE MOLE
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions
By the end of the lesson, the learner should be able to:
Investigate stoichiometry of precipitation reactions
Determine mole ratios from volume measurements
Write ionic equations for precipitation
Analyze limiting and excess reagents
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
KLB Secondary Chemistry Form 3, Pages 53-56
4 2
THE MOLE
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization
By the end of the lesson, the learner should be able to:
Define volumetric analysis and titration
Identify and use titration apparatus correctly
Explain functions of pipettes and burettes
Demonstrate proper reading techniques
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
KLB Secondary Chemistry Form 3, Pages 58-59
4 3
THE MOLE
Titration - Diprotic Acids
Standardization of Solutions
By the end of the lesson, the learner should be able to:
Investigate titrations involving diprotic acids
Determine basicity of acids from titration data
Compare volumes needed for mono- and diprotic acids
Write equations for diprotic acid reactions
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
KLB Secondary Chemistry Form 3, Pages 62-65
4 4
THE MOLE
Back Titration Method
Redox Titrations - Principles
Redox Titrations - KMnO₄ Standardization
By the end of the lesson, the learner should be able to:
Understand principle of back titration
Apply back titration to determine composition
Calculate concentrations using back titration data
Determine atomic masses from back titration
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
KLB Secondary Chemistry Form 3, Pages 67-70
4 5
THE MOLE
Water of Crystallization Determination
Atomicity and Molar Gas Volume
By the end of the lesson, the learner should be able to:
Determine water of crystallization in hydrated salts
Use redox titration to find formula of hydrated salt
Calculate value of 'n' in crystallization formulas
Apply analytical data to determine complete formulas
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
KLB Secondary Chemistry Form 3, Pages 72-73
5 1
THE MOLE
Combining Volumes of Gases - Experimental Investigation
Gas Laws and Chemical Equations
By the end of the lesson, the learner should be able to:
Investigate Gay-Lussac's law experimentally
Measure combining volumes of reacting gases
Determine simple whole number ratios
Write equations from volume relationships
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
Scientific calculators, Gas law charts, Volume ratio examples
KLB Secondary Chemistry Form 3, Pages 75-77
5 2
ORGANIC CHEMISTRY I
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
By the end of the lesson, the learner should be able to:
Define organic chemistry and hydrocarbons
Explain why carbon forms many compounds
Classify hydrocarbons into alkanes, alkenes, and alkynes
Identify the bonding in carbon compounds
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
KLB Secondary Chemistry Form 3, Pages 86-87
5 3
ORGANIC CHEMISTRY I
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods
By the end of the lesson, the learner should be able to:
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
KLB Secondary Chemistry Form 3, Pages 87-89
5 4
ORGANIC CHEMISTRY I
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched
By the end of the lesson, the learner should be able to:
Define homologous series using alkanes
Write molecular formulas for first 10 alkanes
Identify characteristics of homologous series
Apply general formula CₙH₂ₙ₊₂ for alkanes
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 90-92
5 5
ORGANIC CHEMISTRY I
Isomerism in Alkanes - Structural Isomers
Laboratory Preparation of Methane
By the end of the lesson, the learner should be able to:
Define isomerism in alkanes
Draw structural isomers of butane and pentane
Distinguish between chain and positional isomerism
Predict number of isomers for given alkanes
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Molecular model kits, Isomerism charts, Structural formula worksheets
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
KLB Secondary Chemistry Form 3, Pages 92-94
6 1
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethane
Physical Properties of Alkanes
By the end of the lesson, the learner should be able to:
Prepare ethane using sodium propanoate and soda lime
Compare preparation methods of methane and ethane
Test properties of ethane gas
Write general equation for alkane preparation
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
KLB Secondary Chemistry Form 3, Pages 94-96
6 2
ORGANIC CHEMISTRY I
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups
By the end of the lesson, the learner should be able to:
Write equations for complete and incomplete combustion
Explain substitution reactions with halogens
Describe conditions for halogenation reactions
Name halogenated alkane products
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters
KLB Secondary Chemistry Form 3, Pages 97-98
6 3
ORGANIC CHEMISTRY I
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional
By the end of the lesson, the learner should be able to:
Apply IUPAC rules for naming alkenes
Number carbon chains to give lowest numbers to double bonds
Name branched alkenes with substituents
Distinguish position isomers of alkenes
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models
KLB Secondary Chemistry Form 3, Pages 101-102
6 4
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties
By the end of the lesson, the learner should be able to:
Prepare ethene by dehydration of ethanol
Describe role of concentrated sulfuric acid
Set up apparatus safely for ethene preparation
Test physical and chemical properties of ethene
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
KLB Secondary Chemistry Form 3, Pages 102-104
6 5
ORGANIC CHEMISTRY I
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Explain addition reactions due to C=C double bond
Write equations for halogenation of alkenes
Describe hydrogenation and hydrohalogenation
Explain addition mechanism
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 105-107
7 1
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
KLB Secondary Chemistry Form 3, Pages 108-109
7 2
ORGANIC CHEMISTRY I
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne
By the end of the lesson, the learner should be able to:
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 110-111
7 3
ORGANIC CHEMISTRY I
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
By the end of the lesson, the learner should be able to:
Describe physical properties of alkynes
Compare alkyne properties with alkenes and alkanes
Write combustion equations for alkynes
Explain addition reactions of alkynes
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
KLB Secondary Chemistry Form 3, Pages 112-113
7 4
ORGANIC CHEMISTRY I
NITROGEN AND ITS COMPOUNDS
Uses of Alkynes and Industrial Applications
Introduction to Nitrogen - Properties and Occurrence
By the end of the lesson, the learner should be able to:
List industrial uses of alkynes
Explain oxy-acetylene welding applications
Describe use in synthetic fiber production
Evaluate importance as chemical starting materials
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
KLB Secondary Chemistry Form 3, Pages 115-116
7 5
NITROGEN AND ITS COMPOUNDS
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
Laboratory Preparation of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
KLB Secondary Chemistry Form 3, Pages 119-121
8 1
NITROGEN AND ITS COMPOUNDS
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Describe physical properties of nitrogen
Explain chemical inertness of nitrogen
Describe reactions at high temperatures
List industrial uses of nitrogen
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
KLB Secondary Chemistry Form 3, Pages 121-123
8 2
NITROGEN AND ITS COMPOUNDS
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects
By the end of the lesson, the learner should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid
Prepare from thermal decomposition of nitrates
Test properties including equilibrium with N₂O₄
Describe reactions and uses
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
KLB Secondary Chemistry Form 3, Pages 127-131
8 3
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility
By the end of the lesson, the learner should be able to:
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
KLB Secondary Chemistry Form 3, Pages 131-134
8 4
NITROGEN AND ITS COMPOUNDS
Reactions of Aqueous Ammonia with Metal Ions
Chemical Properties of Ammonia - Reactions with Acids and Combustion
By the end of the lesson, the learner should be able to:
Test reactions of aqueous ammonia with various metal ions
Observe precipitate formation and dissolution
Explain complex ion formation
Use reactions for metal ion identification
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
KLB Secondary Chemistry Form 3, Pages 136-138
8 5
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Ammonia - The Haber Process
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
By the end of the lesson, the learner should be able to:
Describe raw materials and their sources
Explain optimum conditions for ammonia synthesis
Draw flow diagram of Haber process
Explain economic considerations and catalyst use
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
KLB Secondary Chemistry Form 3, Pages 140-141
9 1
NITROGEN AND ITS COMPOUNDS
Nitrogenous Fertilizers - Types and Calculations
Laboratory Preparation of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Calculate percentage nitrogen in various fertilizers
Compare fertilizer effectiveness
Prepare simple nitrogenous fertilizers
Discuss environmental considerations
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
KLB Secondary Chemistry Form 3, Pages 141-144
9 2
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals
By the end of the lesson, the learner should be able to:
Describe catalytic oxidation process
Explain raw materials and conditions
Draw flow diagram of industrial process
Calculate theoretical yields and efficiency
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
KLB Secondary Chemistry Form 3, Pages 145-147
9 3
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Test reactions with carbonates and hydrogen carbonates
Test neutralization with metal hydroxides and oxides
Identify products formed
Write balanced chemical equations
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 3, Pages 147-150
9 4
NITROGEN AND ITS COMPOUNDS
Uses of Nitric(V) Acid and Introduction to Nitrates
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test
By the end of the lesson, the learner should be able to:
List major industrial uses of nitric acid
Explain importance in fertilizer manufacture
Describe use in explosives and dyes
Introduce nitrate salts and their preparation
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
KLB Secondary Chemistry Form 3, Pages 151
9 5
NITROGEN AND ITS COMPOUNDS
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions
By the end of the lesson, the learner should be able to:
Explain sources of nitrogen pollution
Describe formation of acid rain
Discuss effects on environment and health
Evaluate pollution control measures
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
KLB Secondary Chemistry Form 3, Pages 154-157
10 1
NITROGEN AND ITS COMPOUNDS
Comprehensive Problem Solving - Nitrogen Chemistry
Laboratory Practical Assessment - Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Solve complex problems involving nitrogen compounds
Apply knowledge to industrial processes
Calculate yields and percentages in reactions
Analyze experimental data and results
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
KLB Secondary Chemistry Form 3, Pages 119-157
10 2
NITROGEN AND ITS COMPOUNDS
Industrial Applications and Economic Importance
Chapter Review and Integration
By the end of the lesson, the learner should be able to:
Evaluate economic importance of nitrogen industry
Analyze industrial production costs and benefits
Compare different manufacturing processes
Assess impact on agricultural productivity
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
KLB Secondary Chemistry Form 3, Pages 119-157
10 3
SULPHUR AND ITS COMPOUNDS
Extraction of Sulphur
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements
By the end of the lesson, the learner should be able to:
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 160-161
10 4
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the reaction of sulphur with concentrated acids. Identify the products formed in these reactions. Write balanced equations for oxidation reactions. Test for sulphate ions using barium chloride.
Practical work: Experiment 3(b) - Reactions with concentrated nitric(V) acid, sulphuric(VI) acid, and hydrochloric acid. Testing with barium chloride solution. Observation: Formation of sulphate ions, brown fumes, no reaction with HCl. Discussion: Sulphur as a reducing agent, acids as oxidizing agents.
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
KLB Secondary Chemistry Form 4, Pages 167-168
10 5
SULPHUR AND ITS COMPOUNDS
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing.
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
KLB Secondary Chemistry Form 4, Pages 173
11 1
SULPHUR AND ITS COMPOUNDS
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 176-177
11 2
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
KLB Secondary Chemistry Form 4, Pages 179-181
11 3
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions.
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 183-184
11 4
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Metals
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series.
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations.
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
KLB Secondary Chemistry Form 4, Pages 184-185
11 5
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
Hydrogen Sulphide - Preparation and Physical Properties
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions.
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
KLB Secondary Chemistry Form 4, Pages 186-187
12 1
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Sulphide
Pollution Effects and Summary
Introduction and Preparation of Chlorine
By the end of the lesson, the learner should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions.
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
KLB Secondary Chemistry Form 4, Pages 188-190
12 2
CHLORINE AND ITS COMPOUNDS
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine
By the end of the lesson, the learner should be able to:
Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas.
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery.
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
KLB Secondary Chemistry Form 4, Pages 196-197
12 3
CHLORINE AND ITS COMPOUNDS
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder.
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 202-203
12 4
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 205-207
12 5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 208-211

Your Name Comes Here


Download

Feedback