Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
THE MOLE
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept
By the end of the lesson, the learner should be able to:
Define relative mass using practical examples
Compare masses of different objects using a reference standard
Explain the concept of relative atomic mass
Identify carbon-12 as the reference standard
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
KLB Secondary Chemistry Form 3, Pages 25-27
2 2
THE MOLE
Interconversion of Mass and Moles for Elements
Molecules and Moles - Diatomic Elements
By the end of the lesson, the learner should be able to:
Apply the formula: moles = mass/molar mass
Calculate mass from given moles of elements
Convert between moles and number of atoms
Solve numerical problems involving moles and mass
Worked examples: Mass-mole conversions using triangle method. Supervised practice: Calculate moles in given masses of common elements. Problem solving: Convert moles to atoms using Avogadro's number. Assignment: Practice problems on interconversion.
Scientific calculators, Periodic table, Worked example charts, Formula triangles
Molecular models, Charts showing diatomic elements, Scientific calculators
KLB Secondary Chemistry Form 3, Pages 30-32
2 3-4
THE MOLE
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method
Empirical Formula - Percentage Composition Method
By the end of the lesson, the learner should be able to:
Define empirical formula
Determine empirical formula from experimental data
Calculate mole ratios from mass data
Express results as simplest whole number ratios
Calculate empirical formula from percentage composition
Convert percentages to moles
Determine simplest whole number ratios
Apply method to various compounds
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
Scientific calculators, Percentage composition charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 32-35
KLB Secondary Chemistry Form 3, Pages 37-38
2 5
THE MOLE
Molecular Formula - Determination from Empirical Formula
Molecular Formula - Combustion Analysis
By the end of the lesson, the learner should be able to:
Define molecular formula
Relate molecular formula to empirical formula
Calculate molecular formula using molecular mass
Apply the relationship (empirical formula)ₙ = molecular formula
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
Scientific calculators, Molecular mass charts, Worked example displays
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
KLB Secondary Chemistry Form 3, Pages 38-40
3

Opener examination

4 1
THE MOLE
Concentration and Molarity of Solutions
Preparation of Molar Solutions
By the end of the lesson, the learner should be able to:
Define concentration and molarity of solutions
Calculate molarity from mass and volume data
Convert between different concentration units
Apply molarity calculations to various solutions
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
Scientific calculators, Molarity charts, Various salt samples for demonstration
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
KLB Secondary Chemistry Form 3, Pages 41-43
4 2
THE MOLE
Dilution of Solutions
By the end of the lesson, the learner should be able to:
Define dilution process
Apply dilution formula M₁V₁ = M₂V₂
Calculate concentrations after dilution
Prepare dilute solutions from concentrated ones
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
KLB Secondary Chemistry Form 3, Pages 46-50
4 3-4
THE MOLE
Stoichiometry - Experimental Determination of Equations
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions
Volumetric Analysis - Introduction and Apparatus
By the end of the lesson, the learner should be able to:
Determine chemical equations from experimental data
Calculate mole ratios from mass measurements
Write balanced chemical equations
Apply stoichiometry to displacement reactions
Determine stoichiometry of gas-producing reactions
Collect and measure gas volumes
Calculate mole ratios involving gases
Write equations for acid-carbonate reactions
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
KLB Secondary Chemistry Form 3, Pages 50-53
KLB Secondary Chemistry Form 3, Pages 56-58
4 5
THE MOLE
Titration - Acid-Base Neutralization
Titration - Diprotic Acids
By the end of the lesson, the learner should be able to:
Perform acid-base titrations accurately
Use indicators to determine end points
Record titration data properly
Calculate average titres from multiple readings
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision.
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
KLB Secondary Chemistry Form 3, Pages 59-62
5 1
THE MOLE
Standardization of Solutions
By the end of the lesson, the learner should be able to:
Define standardization process
Standardize HCl using Na₂CO₃ as primary standard
Calculate accurate concentrations from titration data
Understand importance of primary standards
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
KLB Secondary Chemistry Form 3, Pages 65-67
5 2
THE MOLE
Back Titration Method
Redox Titrations - Principles
By the end of the lesson, the learner should be able to:
Understand principle of back titration
Apply back titration to determine composition
Calculate concentrations using back titration data
Determine atomic masses from back titration
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
KLB Secondary Chemistry Form 3, Pages 67-70
5 3-4
THE MOLE
Redox Titrations - KMnO₄ Standardization
Water of Crystallization Determination
Atomicity and Molar Gas Volume
Combining Volumes of Gases - Experimental Investigation
By the end of the lesson, the learner should be able to:
Standardize KMnO₄ solution using iron(II) salt
Calculate molarity from redox titration data
Apply 1:5 mole ratio in calculations
Prepare solutions for redox titrations
Define atomicity of gaseous elements
Classify gases as monoatomic, diatomic, or triatomic
Determine molar gas volume experimentally
Calculate gas densities and molar masses
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
KLB Secondary Chemistry Form 3, Pages 70-72
KLB Secondary Chemistry Form 3, Pages 73-75
5 5
THE MOLE
Gas Laws and Chemical Equations
By the end of the lesson, the learner should be able to:
Apply Avogadro's law to chemical reactions
Use volume ratios to determine chemical equations
Calculate product volumes from reactant volumes
Solve problems involving gas stoichiometry
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
Scientific calculators, Gas law charts, Volume ratio examples
KLB Secondary Chemistry Form 3, Pages 77-79
6 1
ORGANIC CHEMISTRY I
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
By the end of the lesson, the learner should be able to:
Define organic chemistry and hydrocarbons
Explain why carbon forms many compounds
Classify hydrocarbons into alkanes, alkenes, and alkynes
Identify the bonding in carbon compounds
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
KLB Secondary Chemistry Form 3, Pages 86-87
6 2
ORGANIC CHEMISTRY I
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods
By the end of the lesson, the learner should be able to:
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
KLB Secondary Chemistry Form 3, Pages 87-89
6 3-4
ORGANIC CHEMISTRY I
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers
By the end of the lesson, the learner should be able to:
Define homologous series using alkanes
Write molecular formulas for first 10 alkanes
Identify characteristics of homologous series
Apply general formula CₙH₂ₙ₊₂ for alkanes
Define isomerism in alkanes
Draw structural isomers of butane and pentane
Distinguish between chain and positional isomerism
Predict number of isomers for given alkanes
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets
KLB Secondary Chemistry Form 3, Pages 90-92
KLB Secondary Chemistry Form 3, Pages 92-94
6 5
ORGANIC CHEMISTRY I
Laboratory Preparation of Methane
Laboratory Preparation of Ethane
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of methane
Perform methane preparation experiment safely
Test physical and chemical properties of methane
Write equation for methane preparation
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
KLB Secondary Chemistry Form 3, Pages 94-96
7 1
ORGANIC CHEMISTRY I
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution
By the end of the lesson, the learner should be able to:
Describe physical properties of alkanes
Explain trends in melting and boiling points
Relate molecular size to physical properties
Compare solubility in different solvents
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets
KLB Secondary Chemistry Form 3, Pages 96-97
7 2
ORGANIC CHEMISTRY I
Uses of Alkanes in Industry and Daily Life
By the end of the lesson, the learner should be able to:
List major uses of different alkanes
Explain industrial applications of alkanes
Describe environmental considerations
Evaluate economic importance of alkanes
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
Industrial application charts, Product samples, Environmental impact materials
KLB Secondary Chemistry Form 3, Pages 98-100
7 3-4
ORGANIC CHEMISTRY I
Introduction to Alkenes and Functional Groups
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene
By the end of the lesson, the learner should be able to:
Define alkenes and unsaturation
Identify the C=C functional group
Write general formula for alkenes (CₙH₂ₙ)
Compare alkenes with alkanes
Draw structural isomers of alkenes
Distinguish between branching and positional isomerism
Identify geometric isomers in alkenes
Predict isomer numbers for given molecular formulas
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Alkene series charts, Molecular models showing double bonds, Functional group posters
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 100-101
KLB Secondary Chemistry Form 3, Pages 102
7 5
ORGANIC CHEMISTRY I
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions
By the end of the lesson, the learner should be able to:
Describe catalytic dehydration using aluminum oxide
Compare different preparation methods
List physical properties of ethene
Explain trends in alkene physical properties
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
KLB Secondary Chemistry Form 3, Pages 102-104
8

Midterm exam

9

Half term break

10 1
ORGANIC CHEMISTRY I
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇
Explain polymerization of ethene
Define monomers and polymers
Write equations for polymer formation
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 107-108
10 2
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
KLB Secondary Chemistry Form 3, Pages 108-109
10 3-4
ORGANIC CHEMISTRY I
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
By the end of the lesson, the learner should be able to:
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Describe physical properties of alkynes
Compare alkyne properties with alkenes and alkanes
Write combustion equations for alkynes
Explain addition reactions of alkynes
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
KLB Secondary Chemistry Form 3, Pages 110-111
KLB Secondary Chemistry Form 3, Pages 112-113
10 5
ORGANIC CHEMISTRY I
Uses of Alkynes and Industrial Applications
By the end of the lesson, the learner should be able to:
List industrial uses of alkynes
Explain oxy-acetylene welding applications
Describe use in synthetic fiber production
Evaluate importance as chemical starting materials
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
KLB Secondary Chemistry Form 3, Pages 115-116
11

End of term 1 exams


Your Name Comes Here


Download

Feedback