Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 5
THE MOLE
Relative Mass - Introduction and Experimental Investigation
By the end of the lesson, the learner should be able to:
Define relative mass using practical examples
Compare masses of different objects using a reference standard
Explain the concept of relative atomic mass
Identify carbon-12 as the reference standard
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
KLB Secondary Chemistry Form 3, Pages 25-27
2

Opener examination

3 1
THE MOLE
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements
By the end of the lesson, the learner should be able to:
Define Avogadro's constant and its value
Explain the concept of a mole as a counting unit
Relate molar mass to relative atomic mass
Calculate number of atoms in given masses of elements
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles
KLB Secondary Chemistry Form 3, Pages 27-30
3 2
THE MOLE
Molecules and Moles - Diatomic Elements
By the end of the lesson, the learner should be able to:
Distinguish between atoms and molecules
Define relative molecular mass
Calculate moles of molecules from given mass
Determine number of atoms in molecular compounds
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Molecular models, Charts showing diatomic elements, Scientific calculators
KLB Secondary Chemistry Form 3, Pages 29-30
3 3-4
THE MOLE
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method
By the end of the lesson, the learner should be able to:
Define empirical formula
Determine empirical formula from experimental data
Calculate mole ratios from mass data
Express results as simplest whole number ratios
Determine empirical formula using reduction reactions
Calculate empirical formula from reduction data
Apply reduction method to copper oxides
Analyze experimental errors and sources
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions.
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
KLB Secondary Chemistry Form 3, Pages 32-35
KLB Secondary Chemistry Form 3, Pages 35-37
3 5
THE MOLE
Empirical Formula - Percentage Composition Method
Molecular Formula - Determination from Empirical Formula
By the end of the lesson, the learner should be able to:
Calculate empirical formula from percentage composition
Convert percentages to moles
Determine simplest whole number ratios
Apply method to various compounds
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
Scientific calculators, Percentage composition charts, Worked example displays
Scientific calculators, Molecular mass charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 37-38
4 1
THE MOLE
Molecular Formula - Combustion Analysis
By the end of the lesson, the learner should be able to:
Determine molecular formula from combustion data
Calculate moles of products in combustion
Relate product moles to reactant composition
Apply combustion analysis to hydrocarbons
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
KLB Secondary Chemistry Form 3, Pages 40-41
4 2
THE MOLE
Concentration and Molarity of Solutions
By the end of the lesson, the learner should be able to:
Define concentration and molarity of solutions
Calculate molarity from mass and volume data
Convert between different concentration units
Apply molarity calculations to various solutions
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
Scientific calculators, Molarity charts, Various salt samples for demonstration
KLB Secondary Chemistry Form 3, Pages 41-43
4 3-4
THE MOLE
Preparation of Molar Solutions
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations
By the end of the lesson, the learner should be able to:
Describe procedure for preparing molar solutions
Use volumetric flasks correctly
Calculate masses needed for specific molarities
Prepare standard solutions accurately
Determine chemical equations from experimental data
Calculate mole ratios from mass measurements
Write balanced chemical equations
Apply stoichiometry to displacement reactions
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
KLB Secondary Chemistry Form 3, Pages 43-46
KLB Secondary Chemistry Form 3, Pages 50-53
4 5
THE MOLE
Stoichiometry - Precipitation Reactions
By the end of the lesson, the learner should be able to:
Investigate stoichiometry of precipitation reactions
Determine mole ratios from volume measurements
Write ionic equations for precipitation
Analyze limiting and excess reagents
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
KLB Secondary Chemistry Form 3, Pages 53-56
5 1
THE MOLE
Stoichiometry - Gas Evolution Reactions
By the end of the lesson, the learner should be able to:
Determine stoichiometry of gas-producing reactions
Collect and measure gas volumes
Calculate mole ratios involving gases
Write equations for acid-carbonate reactions
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
KLB Secondary Chemistry Form 3, Pages 56-58
5 2
THE MOLE
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization
By the end of the lesson, the learner should be able to:
Define volumetric analysis and titration
Identify and use titration apparatus correctly
Explain functions of pipettes and burettes
Demonstrate proper reading techniques
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
KLB Secondary Chemistry Form 3, Pages 58-59
5 3-4
THE MOLE
Titration - Diprotic Acids
Standardization of Solutions
By the end of the lesson, the learner should be able to:
Investigate titrations involving diprotic acids
Determine basicity of acids from titration data
Compare volumes needed for mono- and diprotic acids
Write equations for diprotic acid reactions
Define standardization process
Standardize HCl using Na₂CO₃ as primary standard
Calculate accurate concentrations from titration data
Understand importance of primary standards
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
KLB Secondary Chemistry Form 3, Pages 62-65
KLB Secondary Chemistry Form 3, Pages 65-67
5 5
THE MOLE
Back Titration Method
By the end of the lesson, the learner should be able to:
Understand principle of back titration
Apply back titration to determine composition
Calculate concentrations using back titration data
Determine atomic masses from back titration
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
KLB Secondary Chemistry Form 3, Pages 67-70
6 1
THE MOLE
Redox Titrations - Principles
Redox Titrations - KMnO₄ Standardization
By the end of the lesson, the learner should be able to:
Explain principles of redox titrations
Identify color changes in redox reactions
Understand self-indicating nature of some redox reactions
Write ionic equations for redox processes
Teacher exposition: Redox titration principles. Demonstrate color changes: MnO₄⁻ (purple) → Mn²⁺ (colorless), Cr₂O₇²⁻ (orange) → Cr³⁺ (green). Discussion: Self-indicating reactions. Write half-equations and overall ionic equations.
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
KLB Secondary Chemistry Form 3, Pages 68-70
6 2
THE MOLE
Water of Crystallization Determination
By the end of the lesson, the learner should be able to:
Determine water of crystallization in hydrated salts
Use redox titration to find formula of hydrated salt
Calculate value of 'n' in crystallization formulas
Apply analytical data to determine complete formulas
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
KLB Secondary Chemistry Form 3, Pages 72-73
6 3-4
THE MOLE
Atomicity and Molar Gas Volume
Combining Volumes of Gases - Experimental Investigation
By the end of the lesson, the learner should be able to:
Define atomicity of gaseous elements
Classify gases as monoatomic, diatomic, or triatomic
Determine molar gas volume experimentally
Calculate gas densities and molar masses
Investigate Gay-Lussac's law experimentally
Measure combining volumes of reacting gases
Determine simple whole number ratios
Write equations from volume relationships
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
KLB Secondary Chemistry Form 3, Pages 73-75
KLB Secondary Chemistry Form 3, Pages 75-77
6 5
THE MOLE
ORGANIC CHEMISTRY I
Gas Laws and Chemical Equations
Introduction to Organic Chemistry and Hydrocarbons
By the end of the lesson, the learner should be able to:
Apply Avogadro's law to chemical reactions
Use volume ratios to determine chemical equations
Calculate product volumes from reactant volumes
Solve problems involving gas stoichiometry
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
Scientific calculators, Gas law charts, Volume ratio examples
Carbon models, Hydrocarbon structure charts, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 77-79
7 1
ORGANIC CHEMISTRY I
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
By the end of the lesson, the learner should be able to:
Identify natural sources of alkanes
Describe composition of natural gas and biogas
Explain crude oil as major source of alkanes
Describe biogas digester and its operation
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
KLB Secondary Chemistry Form 3, Pages 86-87
7 2
ORGANIC CHEMISTRY I
Fractional Distillation of Crude Oil
By the end of the lesson, the learner should be able to:
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
KLB Secondary Chemistry Form 3, Pages 87-89
7 3-4
ORGANIC CHEMISTRY I
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched
By the end of the lesson, the learner should be able to:
Define cracking of alkanes
Distinguish between thermal and catalytic cracking
Write equations for cracking reactions
Explain industrial importance of cracking
Name straight-chain alkanes using IUPAC rules
Identify parent chains in branched alkanes
Name branched alkanes with substituent groups
Apply systematic naming rules correctly
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 89-90
KLB Secondary Chemistry Form 3, Pages 90-92
7 5
ORGANIC CHEMISTRY I
Isomerism in Alkanes - Structural Isomers
By the end of the lesson, the learner should be able to:
Define isomerism in alkanes
Draw structural isomers of butane and pentane
Distinguish between chain and positional isomerism
Predict number of isomers for given alkanes
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Molecular model kits, Isomerism charts, Structural formula worksheets
KLB Secondary Chemistry Form 3, Pages 92-94
8

Midterm exam

9

Half term break

10 1
ORGANIC CHEMISTRY I
Laboratory Preparation of Methane
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of methane
Perform methane preparation experiment safely
Test physical and chemical properties of methane
Write equation for methane preparation
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
KLB Secondary Chemistry Form 3, Pages 94-96
10 2
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethane
Physical Properties of Alkanes
By the end of the lesson, the learner should be able to:
Prepare ethane using sodium propanoate and soda lime
Compare preparation methods of methane and ethane
Test properties of ethane gas
Write general equation for alkane preparation
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
KLB Secondary Chemistry Form 3, Pages 94-96
10 3-4
ORGANIC CHEMISTRY I
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life
By the end of the lesson, the learner should be able to:
Write equations for complete and incomplete combustion
Explain substitution reactions with halogens
Describe conditions for halogenation reactions
Name halogenated alkane products
List major uses of different alkanes
Explain industrial applications of alkanes
Describe environmental considerations
Evaluate economic importance of alkanes
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials
KLB Secondary Chemistry Form 3, Pages 97-98
KLB Secondary Chemistry Form 3, Pages 98-100
10 5
ORGANIC CHEMISTRY I
Introduction to Alkenes and Functional Groups
By the end of the lesson, the learner should be able to:
Define alkenes and unsaturation
Identify the C=C functional group
Write general formula for alkenes (CₙH₂ₙ)
Compare alkenes with alkanes
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Alkene series charts, Molecular models showing double bonds, Functional group posters
KLB Secondary Chemistry Form 3, Pages 100-101
11 1
ORGANIC CHEMISTRY I
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional
By the end of the lesson, the learner should be able to:
Apply IUPAC rules for naming alkenes
Number carbon chains to give lowest numbers to double bonds
Name branched alkenes with substituents
Distinguish position isomers of alkenes
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models
KLB Secondary Chemistry Form 3, Pages 101-102
11 2
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethene
By the end of the lesson, the learner should be able to:
Prepare ethene by dehydration of ethanol
Describe role of concentrated sulfuric acid
Set up apparatus safely for ethene preparation
Test physical and chemical properties of ethene
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 102-104
11 3-4
ORGANIC CHEMISTRY I
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Describe catalytic dehydration using aluminum oxide
Compare different preparation methods
List physical properties of ethene
Explain trends in alkene physical properties
Explain addition reactions due to C=C double bond
Write equations for halogenation of alkenes
Describe hydrogenation and hydrohalogenation
Explain addition mechanism
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 102-104
KLB Secondary Chemistry Form 3, Pages 105-107
11 5
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
KLB Secondary Chemistry Form 3, Pages 108-109
12

End of term 1 exams

13 1
ORGANIC CHEMISTRY I
Introduction to Alkynes and Triple Bond
By the end of the lesson, the learner should be able to:
Define alkynes and triple bond structure
Write general formula for alkynes (CₙH₂ₙ₋₂)
Identify first members of alkyne series
Compare degree of unsaturation in hydrocarbons
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
KLB Secondary Chemistry Form 3, Pages 109-110
13 2
ORGANIC CHEMISTRY I
Nomenclature and Isomerism in Alkynes
By the end of the lesson, the learner should be able to:
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 110-111
13 3-4
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
By the end of the lesson, the learner should be able to:
Prepare ethyne from calcium carbide and water
Set up gas collection apparatus safely
Test physical and chemical properties of ethyne
Write equation for ethyne preparation
Write equations for halogenation of alkynes
Describe hydrogenation and hydrohalogenation
Compare reaction rates: alkynes vs alkenes
Perform chemical tests for alkynes
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
KLB Secondary Chemistry Form 3, Pages 111-112
KLB Secondary Chemistry Form 3, Pages 113-115
13 5
ORGANIC CHEMISTRY I
Uses of Alkynes and Industrial Applications
By the end of the lesson, the learner should be able to:
List industrial uses of alkynes
Explain oxy-acetylene welding applications
Describe use in synthetic fiber production
Evaluate importance as chemical starting materials
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
KLB Secondary Chemistry Form 3, Pages 115-116

Your Name Comes Here


Download

Feedback