If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrical conductivity.
Molten electrolytes. |
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities of substances. |
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities. |
Various solids, bulb, battery, & wires.
Molten candle wax Sugar Sulphur Lead oxide. |
K.L.B. BOOK II PP. 118-119
|
|
| 1 | 2 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrolysis.
Aqueous electrolytes. Electrodes. Reaction on electrodes. Binary electrolyte. |
By the end of the
lesson, the learner
should be able to:
To define electrolysis To describe the process of electrolysis in terms of charge movement. |
Descriptive approach punctuated with Q/A.
|
Graphite electrodes
Battery Various aqueous solutions switch bulb. Various aqueous solutions switch. text book |
K.L.B. BOOK II
|
|
| 1 | 3-4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
CARBON AND SOME OF ITS COMPOUNDS. CARBON AND SOME OF ITS COMPOUNDS. CARBON AND SOME OF ITS COMPOUNDS. CARBON AND SOME OF ITS COMPOUNDS. |
Application of electrolysis.
Electroplating. Allotropy. Physical and chemical properties of diamond, graphite and amorphous carbon Burning carbon and oxygen. Reduction properties of carbon. Reaction of carbon with acids. Preparation of CO2. Properties of CO2. Chemical equations for reactions involving CO2. Uses of CO2. |
By the end of the
lesson, the learner
should be able to:
To state application of electrolysis. Describe reaction of carbon with acids. Prepare CO2 in the lab. |
Discussion and explanations.
Teacher demonstration- reaction of carbon with hot conc HNO3. Write balanced equations for the reaction. Review effects of heat on carbonates. Group experiments/teacher demonstration- preparation of CO2. |
text book
Silver nitrate Iron nail Complete circuit battery. Charcoal, graphite. Carbon, limewater, tube, limewater stand& Bunsen burner. CuO, pounded charcoal, Bunsen burner& bottle top Conc. HNO3, limewater. Lime water, Magnesium ribbon, Universal indicator, lit candle. text book |
K.L.B. BOOK II P. 128
K.L.B. BOOK II P.126 |
|
| 1 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide. Carbonates and hydrogen carbonates. Heating carbonates and hydrogen carbonates. Extraction of sodium carbonate from trona. Solvay process of preparing sodium carbonate. |
By the end of the
lesson, the learner
should be able to:
To describe preparation of carbon monoxide in the lab |
Teacher demonstration: preparation of carbon monoxide in the lab.
Make observations. |
text book
text book, chart |
K.L.B. BOOK II PP. 142-143
|
|
| 2 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
GAS LAWS |
Importance of carbon in nature.
& its
effects on the environment.
Boyle's Law - Introduction and Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. |
text book
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship |
K.L.B. BOOK II PP.157-158
|
|
| 2 | 2 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications Charles's Law - Introduction and Temperature Scales |
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
|
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths |
KLB Secondary Chemistry Form 3, Pages 3-4
|
|
| 2 | 3-4 |
GAS LAWS
|
Charles's Law - Experimental Investigation and Mathematical Expression
Charles's Law - Numerical Problems and Applications Combined Gas Law and Standard Conditions Introduction to Diffusion - Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
Investigate relationship between volume and temperature Express Charles's law mathematically Plot volume vs temperature graphs Extrapolate graphs to find absolute zero Derive the combined gas law equation Apply PV/T = constant in problem solving Define standard temperature and pressure (s.t.p) Define room temperature and pressure (r.t.p) |
Class experiment: Volume-temperature relationship using flask and capillary tube. Record data at different temperatures. Plot graphs: volume vs temperature (°C) and volume vs absolute temperature (K). Extrapolate graph to find absolute zero. Derive V₁/T₁ = V₂/T₂ equation.
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations. |
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
Scientific calculators, Temperature conversion charts, Application examples Scientific calculators, Combined law derivation charts, Standard conditions reference table KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch |
KLB Secondary Chemistry Form 3, Pages 8-10
KLB Secondary Chemistry Form 3, Pages 12-14 |
|
| 2 | 5 |
GAS LAWS
|
Rates of Diffusion - Comparative Study
Graham's Law of Diffusion - Theory and Mathematical Expression Graham's Law - Numerical Applications and Problem Solving |
By the end of the
lesson, the learner
should be able to:
Compare diffusion rates of different gases Investigate factors affecting diffusion rates Measure relative distances covered by diffusing gases Calculate rates of diffusion using distance and time data |
Class experiment: Ammonia and HCl diffusion in glass tube. Insert cotton wool soaked in concentrated NH₃ and HCl at opposite ends. Time the formation of white NH₄Cl ring. Measure distances covered by each gas. Calculate rates: distance/time. Compare molecular masses of NH₃ and HCl.
|
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
Graham's law charts, Molecular mass tables, Mathematical derivation displays Scientific calculators, Worked example charts, Molecular mass reference tables |
KLB Secondary Chemistry Form 3, Pages 16-18
|
|
| 3 | 1 |
THE MOLE
|
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept |
By the end of the
lesson, the learner
should be able to:
Define relative mass using practical examples Compare masses of different objects using a reference standard Explain the concept of relative atomic mass Identify carbon-12 as the reference standard |
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
|
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts |
KLB Secondary Chemistry Form 3, Pages 25-27
|
|
| 3 | 2 |
THE MOLE
|
Interconversion of Mass and Moles for Elements
Molecules and Moles - Diatomic Elements |
By the end of the
lesson, the learner
should be able to:
Apply the formula: moles = mass/molar mass Calculate mass from given moles of elements Convert between moles and number of atoms Solve numerical problems involving moles and mass |
Worked examples: Mass-mole conversions using triangle method. Supervised practice: Calculate moles in given masses of common elements. Problem solving: Convert moles to atoms using Avogadro's number. Assignment: Practice problems on interconversion.
|
Scientific calculators, Periodic table, Worked example charts, Formula triangles
Molecular models, Charts showing diatomic elements, Scientific calculators |
KLB Secondary Chemistry Form 3, Pages 30-32
|
|
| 3 | 3-4 |
THE MOLE
|
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method Empirical Formula - Percentage Composition Method Molecular Formula - Determination from Empirical Formula Molecular Formula - Combustion Analysis |
By the end of the
lesson, the learner
should be able to:
Define empirical formula Determine empirical formula from experimental data Calculate mole ratios from mass data Express results as simplest whole number ratios Define molecular formula Relate molecular formula to empirical formula Calculate molecular formula using molecular mass Apply the relationship (empirical formula)ₙ = molecular formula |
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds. |
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner Scientific calculators, Percentage composition charts, Worked example displays Scientific calculators, Molecular mass charts, Worked example displays Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons |
KLB Secondary Chemistry Form 3, Pages 32-35
KLB Secondary Chemistry Form 3, Pages 38-40 |
|
| 3 | 5 |
THE MOLE
|
Concentration and Molarity of Solutions
Preparation of Molar Solutions |
By the end of the
lesson, the learner
should be able to:
Define concentration and molarity of solutions Calculate molarity from mass and volume data Convert between different concentration units Apply molarity calculations to various solutions |
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
|
Scientific calculators, Molarity charts, Various salt samples for demonstration
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers |
KLB Secondary Chemistry Form 3, Pages 41-43
|
|
| 4 | 1 |
THE MOLE
|
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations Stoichiometry - Precipitation Reactions |
By the end of the
lesson, the learner
should be able to:
Define dilution process Apply dilution formula M₁V₁ = M₂V₂ Calculate concentrations after dilution Prepare dilute solutions from concentrated ones |
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
|
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers |
KLB Secondary Chemistry Form 3, Pages 46-50
|
|
| 4 | 2 |
THE MOLE
|
Stoichiometry - Gas Evolution Reactions
Volumetric Analysis - Introduction and Apparatus |
By the end of the
lesson, the learner
should be able to:
Determine stoichiometry of gas-producing reactions Collect and measure gas volumes Calculate mole ratios involving gases Write equations for acid-carbonate reactions |
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
|
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions |
KLB Secondary Chemistry Form 3, Pages 56-58
|
|
| 4 | 3-4 |
THE MOLE
|
Titration - Acid-Base Neutralization
Titration - Diprotic Acids Standardization of Solutions Back Titration Method Redox Titrations - Principles |
By the end of the
lesson, the learner
should be able to:
Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings Understand principle of back titration Apply back titration to determine composition Calculate concentrations using back titration data Determine atomic masses from back titration |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision.
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass. |
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts |
KLB Secondary Chemistry Form 3, Pages 59-62
KLB Secondary Chemistry Form 3, Pages 67-70 |
|
| 4 | 5 |
THE MOLE
|
Redox Titrations - KMnO₄ Standardization
Water of Crystallization Determination |
By the end of the
lesson, the learner
should be able to:
Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations |
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
|
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance |
KLB Secondary Chemistry Form 3, Pages 70-72
|
|
| 5 | 1 |
THE MOLE
|
Atomicity and Molar Gas Volume
Combining Volumes of Gases - Experimental Investigation Gas Laws and Chemical Equations |
By the end of the
lesson, the learner
should be able to:
Define atomicity of gaseous elements Classify gases as monoatomic, diatomic, or triatomic Determine molar gas volume experimentally Calculate gas densities and molar masses |
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
|
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips Scientific calculators, Gas law charts, Volume ratio examples |
KLB Secondary Chemistry Form 3, Pages 73-75
|
|
| 5 | 2 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil |
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples |
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 5 | 3-4 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods Alkane Series and Homologous Series Concept Nomenclature of Alkanes - Straight Chain and Branched Isomerism in Alkanes - Structural Isomers |
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties. |
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration Alkane series chart, Molecular formula worksheets, Periodic table Structural formula charts, IUPAC naming rules poster, Molecular model kits Molecular model kits, Isomerism charts, Structural formula worksheets |
KLB Secondary Chemistry Form 3, Pages 87-89
KLB Secondary Chemistry Form 3, Pages 90-92 |
|
| 5 | 5 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
Laboratory Preparation of Ethane |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials |
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 6 | 1 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
| 6 | 2 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups Nomenclature of Alkenes |
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
| 6 | 3-4 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene Alternative Preparation of Ethene and Physical Properties Chemical Properties of Alkenes - Addition Reactions |
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size. |
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts Addition reaction charts, Mechanism diagrams, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 102
KLB Secondary Chemistry Form 3, Pages 102-104 |
|
| 6 | 5 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
Tests for Alkenes and Uses Introduction to Alkynes and Triple Bond |
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts |
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
| 7 | 1 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
| 7 | 2 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison |
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
| 7 | 3-4 |
ORGANIC CHEMISTRY I
NITROGEN AND ITS COMPOUNDS NITROGEN AND ITS COMPOUNDS |
Uses of Alkynes and Industrial Applications
Introduction to Nitrogen - Properties and Occurrence Isolation of Nitrogen from Air - Industrial and Laboratory Methods Laboratory Preparation of Nitrogen Gas Properties and Uses of Nitrogen Gas |
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating. |
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon Property summary charts, Uses of nitrogen displays, Industrial application diagrams |
KLB Secondary Chemistry Form 3, Pages 115-116
KLB Secondary Chemistry Form 3, Pages 121-123 |
|
| 7 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties Nitrogen(IV) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate Test physical and chemical properties Explain decomposition and oxidizing properties Describe uses of nitrogen(I) oxide |
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
|
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials |
KLB Secondary Chemistry Form 3, Pages 123-125
|
|
| 8 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Comparison of Nitrogen Oxides and Environmental Effects
Laboratory Preparation of Ammonia |
By the end of the
lesson, the learner
should be able to:
Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
|
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper |
KLB Secondary Chemistry Form 3, Pages 123-131
|
|
| 8 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Preparation of Aqueous Ammonia and Solubility
Reactions of Aqueous Ammonia with Metal Ions |
By the end of the
lesson, the learner
should be able to:
Prepare aqueous ammonia solution Demonstrate high solubility using fountain experiment Explain alkaline properties of aqueous ammonia Write equations for ammonia in water |
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
|
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables |
KLB Secondary Chemistry Form 3, Pages 134-136
|
|
| 8 | 3-4 |
NITROGEN AND ITS COMPOUNDS
|
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process Uses of Ammonia and Introduction to Nitrogenous Fertilizers Nitrogenous Fertilizers - Types and Calculations Laboratory Preparation of Nitric(V) Acid |
By the end of the
lesson, the learner
should be able to:
Test neutralization reactions with acids Investigate combustion of ammonia Examine catalytic oxidation with platinum Study reducing properties with metal oxides Calculate percentage nitrogen in various fertilizers Compare fertilizer effectiveness Prepare simple nitrogenous fertilizers Discuss environmental considerations |
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion. |
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 138-140
KLB Secondary Chemistry Form 3, Pages 141-144 |
|
| 8 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals |
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
|
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints |
KLB Secondary Chemistry Form 3, Pages 145-147
|
|
| 9 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties Uses of Nitric(V) Acid and Introduction to Nitrates |
By the end of the
lesson, the learner
should be able to:
Test reactions with carbonates and hydrogen carbonates Test neutralization with metal hydroxides and oxides Identify products formed Write balanced chemical equations |
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
|
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets |
KLB Secondary Chemistry Form 3, Pages 147-150
|
|
| 9 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test |
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples |
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
| 9 | 3-4 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions Comprehensive Problem Solving - Nitrogen Chemistry Laboratory Practical Assessment - Nitrogen Compounds Industrial Applications and Economic Importance |
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts. |
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates |
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157 |
|
| 9 | 5 |
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS |
Chapter Review and Integration
Extraction of Sulphur |
By the end of the
lesson, the learner
should be able to:
Synthesize all nitrogen chemistry concepts Compare preparation methods for nitrogen compounds Relate structure to properties and reactivity Connect laboratory and industrial processes |
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
|
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum) |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
| 10 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility |
By the end of the
lesson, the learner
should be able to:
Define allotropy and allotropes. Prepare rhombic sulphur in the laboratory. Prepare monoclinic sulphur in the laboratory. Compare the properties of rhombic and monoclinic sulphur. |
Practical work: Experiment 1(a) - Preparation of rhombic sulphur using carbon(IV) sulphide. Practical work: Experiment 1(b) - Preparation of monoclinic sulphur by heating and cooling. Observation: Using hand lens to examine crystal shapes. Discussion: Compare crystal structures and transition temperature.
|
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure |
KLB Secondary Chemistry Form 4, Pages 161-163
|
|
| 10 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements Chemical Properties of Sulphur - Reactions with Acids |
By the end of the
lesson, the learner
should be able to:
Investigate the effect of heat on sulphur. Describe changes in color and viscosity of molten sulphur. Explain the molecular changes occurring during heating. Identify "flowers of sulphur". |
Practical work: Experiment 2(b) - Heating sulphur and observing changes. Observation: Color changes from yellow to amber to reddish-brown to black. Testing viscosity by inverting test tube. Demonstration: Sublimation of sulphur vapour. Discussion: Breaking of S8 rings to form long chains.
|
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 4, Pages 164-165
|
|
| 10 | 3-4 |
SULPHUR AND ITS COMPOUNDS
|
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide Physical and Chemical Properties of Sulphur(IV) Oxide Bleaching Action of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides. Investigate the physical properties of SO2 gas. Test the solubility and acidity of SO Write equations for formation of sulphurous acid. Identify the acidic nature of SO |
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
Practical work: Experiment 5 - Testing color, smell, solubility in water. Testing with dry and moist litmus papers. Universal indicator tests with water and NaOH. Formation of normal and acid salts. Recording observations in Table Safety: Proper ventilation due to toxic nature. |
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents |
KLB Secondary Chemistry Form 4, Pages 168-170
KLB Secondary Chemistry Form 4, Pages 171-173 |
|
| 10 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Reducing Action of Sulphur(IV) Oxide
Oxidising Action of Sulphur(IV) Oxide Test for Sulphate and Sulphite Ions & Uses of SO2 |
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions. |
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
|
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses |
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
| 11 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties |
By the end of the
lesson, the learner
should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process. |
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
|
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard |
KLB Secondary Chemistry Form 4, Pages 179-181
|
|
| 11 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions Reactions of Dilute Sulphuric(VI) Acid - With Metals |
By the end of the
lesson, the learner
should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions. |
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
|
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart |
KLB Secondary Chemistry Form 4, Pages 183-184
|
|
| 11 | 3-4 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides Hydrogen Sulphide - Preparation and Physical Properties Chemical Properties of Hydrogen Sulphide |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates. Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions. |
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling. |
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers |
KLB Secondary Chemistry Form 4, Pages 185-186
KLB Secondary Chemistry Form 4, Pages 187-188 |
|
| 11 | 5 |
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS CHLORINE AND ITS COMPOUNDS |
Pollution Effects and Summary
Introduction and Preparation of Chlorine Physical Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry. |
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
|
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 190-194
|
|
| 12 | 1 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine. |
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
|
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars |
KLB Secondary Chemistry Form 4, Pages 197-199
|
|
| 12 | 2 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions. |
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
|
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes |
KLB Secondary Chemistry Form 4, Pages 201
|
|
| 12 | 3-4 |
CHLORINE AND ITS COMPOUNDS
|
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions Test for Chloride Ions Uses of Chlorine and its Compounds Hydrogen Chloride - Laboratory Preparation |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder. List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications. |
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars |
KLB Secondary Chemistry Form 4, Pages 202-203
KLB Secondary Chemistry Form 4, Pages 205-207 |
|
| 12 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid Uses of Hydrochloric Acid Environmental Pollution by Chlorine Compounds and Summary |
By the end of the
lesson, the learner
should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents. |
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
|
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions |
KLB Secondary Chemistry Form 4, Pages 208-211
|
Your Name Comes Here