Home






SCHEME OF WORK
Mathematics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening and reporting for term 1 2026.

2 1
Statistics II
Introduction to Advanced Statistics
By the end of the lesson, the learner should be able to:

-Review measures of central tendency from Form 2
-Identify limitations of simple mean calculations
-Understand need for advanced statistical methods
-Recognize patterns in large datasets

-Review mean, median, mode from previous work
-Discuss challenges with large numbers
-Examine real data from Kenya (population, rainfall)
-Q&A on statistical applications in daily life
Exercise books
-Manila paper
-Real data examples
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 39-42
2 2
Statistics II
Working Mean Concept
By the end of the lesson, the learner should be able to:

-Define working mean (assumed mean)
-Explain why working mean simplifies calculations
-Identify appropriate working mean values
-Apply working mean to reduce calculation errors

-Demonstrate calculation difficulties with large numbers
-Show how working mean simplifies arithmetic
-Practice selecting suitable working means
-Compare results with and without working mean
Exercise books
-Manila paper
-Sample datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 39-42
2 3
Statistics II
Mean Using Working Mean - Simple Data
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for ungrouped data
-Apply the formula: mean = working mean + mean of deviations
-Verify results using direct calculation method
-Solve problems with whole numbers

-Work through step-by-step examples on chalkboard
-Practice with student marks and heights data
-Verify answers using traditional method
-Individual practice with guided support
Exercise books
-Manila paper
-Student data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
2 4
Statistics II
Mean Using Working Mean - Simple Data
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for ungrouped data
-Apply the formula: mean = working mean + mean of deviations
-Verify results using direct calculation method
-Solve problems with whole numbers

-Work through step-by-step examples on chalkboard
-Practice with student marks and heights data
-Verify answers using traditional method
-Individual practice with guided support
Exercise books
-Manila paper
-Student data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
2 5
Statistics II
Mean Using Working Mean - Frequency Tables
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for frequency data
-Apply working mean to discrete frequency distributions
-Use the formula with frequencies correctly
-Solve real-world problems with frequency data

-Demonstrate with family size data from local community
-Practice calculating fx and fd systematically
-Work through examples step-by-step
-Students practice with their own collected data
Exercise books
-Manila paper
-Community data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
2 6
Statistics II
Mean for Grouped Data Using Working Mean
By the end of the lesson, the learner should be able to:

-Calculate mean for grouped continuous data
-Select appropriate working mean for grouped data
-Use midpoints of class intervals correctly
-Apply working mean formula to grouped data

-Use height/weight data of students in class
-Practice finding midpoints of class intervals
-Work through complex calculations step by step
-Students practice with agricultural production data
Exercise books
-Manila paper
-Real datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
2 7
Statistics II
Advanced Working Mean Techniques
By the end of the lesson, the learner should be able to:

-Apply coding techniques with working mean
-Divide by class width to simplify further
-Use transformation methods efficiently
-Solve complex grouped data problems

-Demonstrate coding method on chalkboard
-Show how dividing by class width helps
-Practice reverse calculations to get original mean
-Work with economic data from Kenya
Exercise books
-Manila paper
-Economic data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
3 1
Statistics II
Introduction to Quartiles, Deciles, Percentiles
By the end of the lesson, the learner should be able to:

-Define quartiles, deciles, and percentiles
-Understand how they divide data into parts
-Explain the relationship between these measures
-Identify their importance in data analysis

-Use physical demonstration with student heights
-Arrange 20 students by height to show quartiles
-Explain percentile ranks in exam results
-Discuss applications in grading systems
Exercise books
-Manila paper
-Student height data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 49-52
3 2
Statistics II
Introduction to Quartiles, Deciles, Percentiles
By the end of the lesson, the learner should be able to:

-Define quartiles, deciles, and percentiles
-Understand how they divide data into parts
-Explain the relationship between these measures
-Identify their importance in data analysis

-Use physical demonstration with student heights
-Arrange 20 students by height to show quartiles
-Explain percentile ranks in exam results
-Discuss applications in grading systems
Exercise books
-Manila paper
-Student height data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 49-52
3 3
Statistics II
Calculating Quartiles for Ungrouped Data
By the end of the lesson, the learner should be able to:

-Find lower quartile, median, upper quartile for raw data
-Apply the position formulas correctly
-Arrange data in ascending order systematically
-Interpret quartile values in context

-Practice with test scores from the class
-Arrange data systematically on chalkboard
-Calculate Q1, Q2, Q3 step by step
-Students work with their own datasets
Exercise books
-Manila paper
-Test score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 4
Statistics II
Quartiles for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate quartiles using interpolation formula
-Identify quartile classes correctly
-Apply the formula: Q = L + [(n/4 - CF)/f] × h
-Solve problems with continuous grouped data

-Work through detailed examples on chalkboard
-Practice identifying quartile positions
-Use cumulative frequency systematically
-Apply to real examination grade data
Exercise books
-Manila paper
-Grade data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 5
Statistics II
Deciles and Percentiles Calculations
By the end of the lesson, the learner should be able to:

-Calculate specific deciles and percentiles
-Apply interpolation formulas for deciles/percentiles
-Interpret decile and percentile positions
-Use these measures for comparative analysis

-Calculate specific percentiles for class test scores
-Find deciles for sports performance data
-Compare students' positions using percentiles
-Practice with national examination statistics
Exercise books
-Manila paper
-Performance data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 6
Statistics II
Introduction to Cumulative Frequency
By the end of the lesson, the learner should be able to:

-Construct cumulative frequency tables
-Understand "less than" cumulative frequencies
-Plot cumulative frequency against class boundaries
-Identify the characteristic S-shape of ogives

-Create cumulative frequency table with class data
-Plot points on manila paper grid
-Join points to form smooth curve
-Discuss properties of ogive curves
Exercise books
-Manila paper
-Ruler
-Class data
KLB Secondary Mathematics Form 4, Pages 52-60
3 7
Statistics II
Drawing Cumulative Frequency Curves (Ogives)
By the end of the lesson, the learner should be able to:

-Draw accurate ogives using proper scales
-Plot cumulative frequency against upper boundaries
-Create smooth curves through plotted points
-Label axes and scales correctly

-Practice plotting on large manila paper
-Use rulers for accurate scales
-Demonstrate smooth curve drawing technique
-Students create their own ogives
Exercise books
-Manila paper
-Ruler
-Pencils
KLB Secondary Mathematics Form 4, Pages 52-60
4 1
Statistics II
Reading Values from Ogives
By the end of the lesson, the learner should be able to:

-Read median from cumulative frequency curve
-Find quartiles using ogive
-Estimate any percentile from the curve
-Interpret readings in real-world context

-Demonstrate reading techniques on large ogive
-Practice finding median position (n/2)
-Read quartile positions systematically
-Students practice reading their own curves
Exercise books
-Manila paper
-Completed ogives
-Ruler
KLB Secondary Mathematics Form 4, Pages 52-60
4 2
Statistics II
Reading Values from Ogives
By the end of the lesson, the learner should be able to:

-Read median from cumulative frequency curve
-Find quartiles using ogive
-Estimate any percentile from the curve
-Interpret readings in real-world context

-Demonstrate reading techniques on large ogive
-Practice finding median position (n/2)
-Read quartile positions systematically
-Students practice reading their own curves
Exercise books
-Manila paper
-Completed ogives
-Ruler
KLB Secondary Mathematics Form 4, Pages 52-60
4 3
Statistics II
Applications of Ogives
By the end of the lesson, the learner should be able to:

-Use ogives to solve real-world problems
-Find number of values above/below certain points
-Calculate percentage of data in given ranges
-Compare different datasets using ogives

-Solve problems about pass rates in examinations
-Find how many students scored above average
-Calculate percentages for different grade ranges
-Use agricultural production data for analysis
Exercise books
-Manila paper
-Real problem datasets
-Ruler
KLB Secondary Mathematics Form 4, Pages 52-60
4 4
Statistics II
Introduction to Measures of Dispersion
By the end of the lesson, the learner should be able to:

-Define dispersion and its importance
-Understand limitations of central tendency alone
-Compare datasets with same mean but different spread
-Identify different measures of dispersion

-Compare test scores of two classes with same mean
-Show how different spreads affect interpretation
-Discuss variability in real-world data
-Introduce range as simplest measure
Exercise books
-Manila paper
-Comparative datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 60-65
4 5
Statistics II
Range and Interquartile Range
By the end of the lesson, the learner should be able to:

-Calculate range for different datasets
-Find interquartile range (Q3 - Q1)
-Calculate quartile deviation (semi-interquartile range)
-Compare advantages and limitations of each measure

-Calculate range for student heights in class
-Find IQR for the same data
-Discuss effect of outliers on range
-Compare IQR stability with range
Exercise books
-Manila paper
-Student data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 60-65
4 6
Statistics II
Range and Interquartile Range
By the end of the lesson, the learner should be able to:

-Calculate range for different datasets
-Find interquartile range (Q3 - Q1)
-Calculate quartile deviation (semi-interquartile range)
-Compare advantages and limitations of each measure

-Calculate range for student heights in class
-Find IQR for the same data
-Discuss effect of outliers on range
-Compare IQR stability with range
Exercise books
-Manila paper
-Student data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 60-65
4 7
Statistics II
Mean Absolute Deviation
By the end of the lesson, the learner should be able to:

-Calculate mean absolute deviation
-Use absolute values correctly in calculations
-Understand concept of average distance from mean
-Apply MAD to compare variability in datasets

-Calculate MAD for class test scores
-Practice with absolute value calculations
-Compare MAD values for different subjects
-Interpret MAD in context of data spread
Exercise books
-Manila paper
-Test score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 1
Statistics II
Introduction to Variance
By the end of the lesson, the learner should be able to:

-Define variance as mean of squared deviations
-Calculate variance using definition formula
-Understand why deviations are squared
-Compare variance with other dispersion measures

-Work through variance calculation step by step
-Explain squaring deviations eliminates negatives
-Calculate variance for simple datasets
-Compare with mean absolute deviation
Exercise books
-Manila paper
-Simple datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 2
Statistics II
Variance Using Alternative Formula
By the end of the lesson, the learner should be able to:

-Apply the formula: σ² = (Σx²/n) - x̄²
-Use alternative variance formula efficiently
-Compare computational methods
-Solve variance problems for frequency data

-Demonstrate both variance formulas
-Show computational advantages of alternative formula
-Practice with frequency tables
-Students choose efficient method
Exercise books
-Manila paper
-Frequency data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 3
Statistics II
Standard Deviation Calculations
By the end of the lesson, the learner should be able to:

-Calculate standard deviation as square root of variance
-Apply standard deviation to ungrouped data
-Use standard deviation to compare datasets
-Interpret standard deviation in practical contexts

-Calculate SD for student exam scores
-Compare SD values for different subjects
-Interpret what high/low SD means
-Use SD to identify consistent performance
Exercise books
-Manila paper
-Exam score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 4
Statistics II
Standard Deviation for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate standard deviation for frequency distributions
-Use working mean with grouped data for SD
-Apply coding techniques to simplify calculations
-Solve complex grouped data problems

-Work with agricultural yield data from local farms
-Use coding method to simplify calculations
-Calculate SD step by step for grouped data
-Compare variability in different crops
Exercise books
-Manila paper
-Agricultural data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 5
Statistics II
Standard Deviation for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate standard deviation for frequency distributions
-Use working mean with grouped data for SD
-Apply coding techniques to simplify calculations
-Solve complex grouped data problems

-Work with agricultural yield data from local farms
-Use coding method to simplify calculations
-Calculate SD step by step for grouped data
-Compare variability in different crops
Exercise books
-Manila paper
-Agricultural data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 6
Statistics II
Advanced Standard Deviation Techniques
By the end of the lesson, the learner should be able to:

-Apply transformation properties of standard deviation
-Use coding with class width division
-Solve problems with multiple transformations
-Verify results using different methods

-Demonstrate coding transformations
-Show how SD changes with data transformations
-Practice reverse calculations
-Verify using alternative methods
Exercise books
-Manila paper
-Transformation examples
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 7
Differentiation
Introduction to Rate of Change
By the end of the lesson, the learner should be able to:

-Understand concept of rate of change in daily life
-Distinguish between average and instantaneous rates
-Identify examples of changing quantities
-Connect rate of change to gradient concepts

-Discuss speed as rate of change of distance
-Examine population growth rates
-Analyze temperature change throughout the day
-Connect to gradients of lines from coordinate geometry
Exercise books
-Manila paper
-Real-world examples
-Graph examples
KLB Secondary Mathematics Form 4, Pages 177-182
6 1
Differentiation
Average Rate of Change
By the end of the lesson, the learner should be able to:

-Calculate average rate of change between two points
-Use formula: average rate = Δy/Δx
-Apply to distance-time and other practical graphs
-Understand limitations of average rate calculations

-Calculate average speed between two time points
-Find average rate of population change
-Use coordinate points to find average rates
-Compare average rates over different intervals
Exercise books
-Manila paper
-Calculators
-Graph paper
KLB Secondary Mathematics Form 4, Pages 177-182
6 2
Differentiation
Instantaneous Rate of Change
By the end of the lesson, the learner should be able to:

-Understand concept of instantaneous rate
-Recognize instantaneous rate as limit of average rates
-Connect to tangent line gradients
-Apply to real-world motion problems

-Demonstrate instantaneous speed using car speedometer
-Show limiting process using smaller intervals
-Connect to tangent line slopes on curves
-Practice with motion and growth examples
Exercise books
-Manila paper
-Tangent demonstrations
-Motion examples
KLB Secondary Mathematics Form 4, Pages 177-182
6 3
Differentiation
Instantaneous Rate of Change
By the end of the lesson, the learner should be able to:

-Understand concept of instantaneous rate
-Recognize instantaneous rate as limit of average rates
-Connect to tangent line gradients
-Apply to real-world motion problems

-Demonstrate instantaneous speed using car speedometer
-Show limiting process using smaller intervals
-Connect to tangent line slopes on curves
-Practice with motion and growth examples
Exercise books
-Manila paper
-Tangent demonstrations
-Motion examples
KLB Secondary Mathematics Form 4, Pages 177-182
6 4
Differentiation
Gradient of Curves at Points
By the end of the lesson, the learner should be able to:

-Find gradient of curve at specific points
-Use tangent line method for gradient estimation
-Apply limiting process to find exact gradients
-Practice with various curve types

-Draw tangent lines to curves on manila paper
-Estimate gradients using tangent slopes
-Use the limiting approach with chord sequences
-Practice with parabolas and other curves
Exercise books
-Manila paper
-Rulers
-Curve examples
KLB Secondary Mathematics Form 4, Pages 178-182
6 5
Differentiation
Introduction to Delta Notation
By the end of the lesson, the learner should be able to:

-Understand delta (Δ) notation for small changes
-Use Δx and Δy for coordinate changes
-Apply delta notation to rate calculations
-Practice reading and writing delta expressions

-Introduce delta as symbol for "change in"
-Practice writing Δx, Δy, Δt expressions
-Use delta notation in rate of change formulas
-Apply to coordinate geometry problems
Exercise books
-Manila paper
-Delta notation examples
-Symbol practice
KLB Secondary Mathematics Form 4, Pages 182-184
6 6
Differentiation
The Limiting Process
By the end of the lesson, the learner should be able to:

-Understand concept of limit in differentiation
-Apply "as Δx approaches zero" reasoning
-Use limiting process to find exact derivatives
-Practice systematic limiting calculations

-Demonstrate limiting process with numerical examples
-Show chord approaching tangent as Δx → 0
-Calculate limits using table of values
-Practice systematic limit evaluation
Exercise books
-Manila paper
-Limit tables
-Systematic examples
KLB Secondary Mathematics Form 4, Pages 182-184
6 7
Differentiation
Introduction to Derivatives
By the end of the lesson, the learner should be able to:

-Define derivative as limit of rate of change
-Use dy/dx notation for derivatives
-Understand derivative as gradient function
-Connect derivatives to tangent line slopes

-Introduce derivative notation dy/dx
-Show derivative as gradient of tangent
-Practice derivative concept with simple functions
-Connect to previous gradient work
Exercise books
-Manila paper
-Derivative notation
-Function examples
KLB Secondary Mathematics Form 4, Pages 182-184
7 1
Differentiation
Derivative of Linear Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of linear functions y = mx + c
-Understand that derivative of linear function is constant
-Apply to straight line gradient problems
-Verify using limiting process

-Find derivative of y = 3x + 2 using definition
-Show that derivative equals the gradient
-Practice with various linear functions
-Verify results using first principles
Exercise books
-Manila paper
-Linear function examples
-Verification methods
KLB Secondary Mathematics Form 4, Pages 184-188
7 2
Differentiation
Derivative of Linear Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of linear functions y = mx + c
-Understand that derivative of linear function is constant
-Apply to straight line gradient problems
-Verify using limiting process

-Find derivative of y = 3x + 2 using definition
-Show that derivative equals the gradient
-Practice with various linear functions
-Verify results using first principles
Exercise books
-Manila paper
-Linear function examples
-Verification methods
KLB Secondary Mathematics Form 4, Pages 184-188
7 3
Differentiation
Derivative of y = x^n (Basic Powers)
By the end of the lesson, the learner should be able to:

-Find derivatives of power functions
-Apply the rule d/dx(x^n) = nx^(n-1)
-Practice with x², x³, x⁴, etc.
-Verify using first principles for simple cases

-Derive d/dx(x²) = 2x using first principles
-Apply power rule to various functions
-Practice with x³, x⁴, x⁵ examples
-Verify selected results using definition
Exercise books
-Manila paper
-Power rule examples
-First principles verification
KLB Secondary Mathematics Form 4, Pages 184-188
7 4
Differentiation
Derivative of Constant Functions
By the end of the lesson, the learner should be able to:

-Understand that derivative of constant is zero
-Apply to functions like y = 5, y = -3
-Explain geometric meaning of zero derivative
-Combine with other differentiation rules

-Show that horizontal lines have zero gradient
-Find derivatives of constant functions
-Explain why rate of change of constant is zero
-Apply to mixed functions with constants
Exercise books
-Manila paper
-Constant function graphs
-Geometric explanations
KLB Secondary Mathematics Form 4, Pages 184-188
7 5
Differentiation
Derivative of Coefficient Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of functions like y = ax^n
-Apply constant multiple rule
-Practice with various coefficient values
-Combine coefficient and power rules

-Find derivative of y = 5x³
-Apply rule d/dx(af(x)) = a·f'(x)
-Practice with negative coefficients
-Combine multiple rules systematically
Exercise books
-Manila paper
-Coefficient examples
-Rule combinations
KLB Secondary Mathematics Form 4, Pages 184-188
7 6
Differentiation
Derivative of Polynomial Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of polynomial functions
-Apply term-by-term differentiation
-Practice with various polynomial degrees
-Verify results using first principles

-Differentiate y = x³ + 2x² - 5x + 7
-Apply rule to each term separately
-Practice with various polynomial types
-Check results using definition for simple cases
Exercise books
-Manila paper
-Polynomial examples
-Term-by-term method
KLB Secondary Mathematics Form 4, Pages 184-188
7 6-7
Differentiation
Derivative of Polynomial Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of polynomial functions
-Apply term-by-term differentiation
-Practice with various polynomial degrees
-Verify results using first principles

-Differentiate y = x³ + 2x² - 5x + 7
-Apply rule to each term separately
-Practice with various polynomial types
-Check results using definition for simple cases
Exercise books
-Manila paper
-Polynomial examples
-Term-by-term method
KLB Secondary Mathematics Form 4, Pages 184-188
8

Midterm exam and break

9 1
Differentiation
Applications to Tangent Lines
By the end of the lesson, the learner should be able to:

-Find equations of tangent lines to curves
-Use derivatives to find tangent gradients
-Apply point-slope form for tangent equations
-Solve problems involving tangent lines

-Find tangent to y = x² at point (2, 4)
-Use derivative to get gradient at specific point
-Apply y - y₁ = m(x - x₁) formula
-Practice with various curves and points
Exercise books
-Manila paper
-Tangent line examples
-Point-slope applications
KLB Secondary Mathematics Form 4, Pages 187-189
9 2
Differentiation
Applications to Normal Lines
By the end of the lesson, the learner should be able to:

-Find equations of normal lines to curves
-Use negative reciprocal of tangent gradient
-Apply to perpendicular line problems
-Practice with normal line calculations

-Find normal to y = x² at point (2, 4)
-Use negative reciprocal relationship
-Apply perpendicular line concepts
-Practice normal line equation finding
Exercise books
-Manila paper
-Normal line examples
-Perpendicular concepts
KLB Secondary Mathematics Form 4, Pages 187-189
9 3
Differentiation
Introduction to Stationary Points
By the end of the lesson, the learner should be able to:

-Define stationary points as points where dy/dx = 0
-Identify different types of stationary points
-Understand geometric meaning of zero gradient
-Find stationary points by solving dy/dx = 0

-Show horizontal tangents at stationary points
-Find stationary points of y = x² - 4x + 3
-Identify maximum, minimum, and inflection points
-Practice finding where dy/dx = 0
Exercise books
-Manila paper
-Curve sketches
-Stationary point examples
KLB Secondary Mathematics Form 4, Pages 189-195
9 4
Differentiation
Types of Stationary Points
By the end of the lesson, the learner should be able to:

-Distinguish between maximum and minimum points
-Identify points of inflection
-Use first derivative test for classification
-Apply gradient analysis around stationary points

-Analyze gradient changes around stationary points
-Use sign analysis of dy/dx
-Classify stationary points by gradient behavior
-Practice with various function types
Exercise books
-Manila paper
-Sign analysis charts
-Classification examples
KLB Secondary Mathematics Form 4, Pages 189-195
9 5
Differentiation
Finding and Classifying Stationary Points
By the end of the lesson, the learner should be able to:

-Solve dy/dx = 0 to find stationary points
-Apply systematic classification method
-Use organized approach for point analysis
-Practice with polynomial functions

-Work through complete stationary point analysis
-Use systematic gradient sign testing
-Create organized solution format
-Practice with cubic and quartic functions
Exercise books
-Manila paper
-Systematic templates
-Complete examples
KLB Secondary Mathematics Form 4, Pages 189-195
9 6
Differentiation
Finding and Classifying Stationary Points
By the end of the lesson, the learner should be able to:

-Solve dy/dx = 0 to find stationary points
-Apply systematic classification method
-Use organized approach for point analysis
-Practice with polynomial functions

-Work through complete stationary point analysis
-Use systematic gradient sign testing
-Create organized solution format
-Practice with cubic and quartic functions
Exercise books
-Manila paper
-Systematic templates
-Complete examples
KLB Secondary Mathematics Form 4, Pages 189-195
9 7
Differentiation
Curve Sketching Using Derivatives
By the end of the lesson, the learner should be able to:

-Use derivatives to sketch accurate curves
-Identify key features: intercepts, stationary points
-Apply systematic curve sketching method
-Combine algebraic and graphical analysis

-Sketch y = x³ - 3x² + 2 using derivatives
-Find intercepts, stationary points, and behavior
-Use systematic curve sketching approach
-Verify sketches using derivative information
Exercise books
-Manila paper
-Curve sketching templates
-Systematic method
KLB Secondary Mathematics Form 4, Pages 195-197
10 1
Differentiation
Introduction to Kinematics Applications
By the end of the lesson, the learner should be able to:

-Apply derivatives to displacement-time relationships
-Understand velocity as first derivative of displacement
-Find velocity functions from displacement functions
-Apply to motion problems

-Find velocity from s = t³ - 2t² + 5t
-Apply v = ds/dt to motion problems
-Practice with various displacement functions
-Connect to real-world motion scenarios
Exercise books
-Manila paper
-Motion examples
-Kinematics applications
KLB Secondary Mathematics Form 4, Pages 197-201
10 2
Differentiation
Acceleration as Second Derivative
By the end of the lesson, the learner should be able to:

-Understand acceleration as derivative of velocity
-Apply a = dv/dt = d²s/dt² notation
-Find acceleration functions from displacement
-Apply to motion analysis problems

-Find acceleration from velocity functions
-Use second derivative notation
-Apply to projectile motion problems
-Practice with particle motion scenarios
Exercise books
-Manila paper
-Second derivative examples
-Motion analysis
KLB Secondary Mathematics Form 4, Pages 197-201
10 3
Differentiation
Motion Problems and Applications
By the end of the lesson, the learner should be able to:

-Solve complete motion analysis problems
-Find displacement, velocity, acceleration relationships
-Apply to real-world motion scenarios
-Use derivatives for motion optimization

-Analyze complete motion of falling object
-Find when particle changes direction
-Calculate maximum height in projectile motion
-Apply to vehicle motion problems
Exercise books
-Manila paper
-Complete motion examples
-Real scenarios
KLB Secondary Mathematics Form 4, Pages 197-201
10 4
Differentiation
Motion Problems and Applications
By the end of the lesson, the learner should be able to:

-Solve complete motion analysis problems
-Find displacement, velocity, acceleration relationships
-Apply to real-world motion scenarios
-Use derivatives for motion optimization

-Analyze complete motion of falling object
-Find when particle changes direction
-Calculate maximum height in projectile motion
-Apply to vehicle motion problems
Exercise books
-Manila paper
-Complete motion examples
-Real scenarios
KLB Secondary Mathematics Form 4, Pages 197-201
10 5
Differentiation
Introduction to Optimization
By the end of the lesson, the learner should be able to:

-Apply derivatives to find maximum and minimum values
-Understand optimization in real-world contexts
-Use calculus for practical optimization problems
-Connect to business and engineering applications

-Find maximum area of rectangle with fixed perimeter
-Apply calculus to profit maximization
-Use derivatives for cost minimization
-Practice with geometric optimization
Exercise books
-Manila paper
-Optimization examples
-Real applications
KLB Secondary Mathematics Form 4, Pages 201-204
10 6
Differentiation
Geometric Optimization Problems
By the end of the lesson, the learner should be able to:

-Apply calculus to geometric optimization
-Find maximum areas and minimum perimeters
-Use derivatives for shape optimization
-Apply to construction and design problems

-Find dimensions for maximum area enclosure
-Optimize container volumes and surface areas
-Apply to architectural design problems
-Practice with various geometric constraints
Exercise books
-Manila paper
-Geometric examples
-Design applications
KLB Secondary Mathematics Form 4, Pages 201-204
10 7
Differentiation
Business and Economic Applications
By the end of the lesson, the learner should be able to:

-Apply derivatives to profit and cost functions
-Find marginal cost and marginal revenue
-Use calculus for business optimization
-Apply to Kenyan business scenarios

-Find maximum profit using calculus
-Calculate marginal cost and revenue
-Apply to agricultural and manufacturing examples
-Use derivatives for business decision-making
Exercise books
-Manila paper
-Business examples
-Economic applications
KLB Secondary Mathematics Form 4, Pages 201-204
11 1
Differentiation
Advanced Optimization Problems
By the end of the lesson, the learner should be able to:

-Solve complex optimization with multiple constraints
-Apply systematic optimization methodology
-Use calculus for engineering applications
-Practice with advanced real-world problems

-Solve complex geometric optimization problems
-Apply to engineering design scenarios
-Use systematic optimization approach
-Practice with multi-variable situations
Exercise books
-Manila paper
-Complex examples
-Engineering applications
KLB Secondary Mathematics Form 4, Pages 201-204
11 2
Integration
Introduction to Reverse Differentiation
By the end of the lesson, the learner should be able to:

-Define integration as reverse of differentiation
-Understand the concept of antiderivative
-Recognize the relationship between gradient functions and original functions
-Apply reverse thinking to simple differentiation examples

-Q/A review on differentiation formulas and rules
-Demonstration of reverse process using simple examples
-Working backwards from derivatives to find original functions
-Discussion on why multiple functions can have same derivative
-Introduction to integration symbol ∫
Graph papers
-Differentiation charts
-Exercise books
-Function examples
KLB Secondary Mathematics Form 4, Pages 221-223
11 3
Integration
Basic Integration Rules - Power Functions
Integration of Polynomial Functions
By the end of the lesson, the learner should be able to:

-Apply power rule for integration: ∫xⁿ dx = xⁿ⁺¹/(n+1) + c
-Understand the constant of integration and why it's necessary
-Integrate simple power functions where n ≠ -1
-Practice with positive, negative, and fractional powers

-Derivation of power rule through reverse differentiation
-Multiple examples with different values of n
-Explanation of arbitrary constant using family of curves
-Practice exercises with various power functions
-Common mistakes discussion and correction
Calculators
-Graph papers
-Power rule charts
-Exercise books
-Algebraic worksheets
-Polynomial examples
KLB Secondary Mathematics Form 4, Pages 223-225
11 4
Integration
Finding Particular Solutions
By the end of the lesson, the learner should be able to:

-Use initial conditions to find specific values of constant c
-Solve problems involving boundary conditions
-Apply integration to find equations of curves
-Distinguish between general and particular solutions

-Working examples with given initial conditions
-Finding curve equations when gradient function and point are known
-Practice problems from various contexts
-Discussion on why particular solutions are important
-Problem-solving session with curve-finding exercises
Graph papers
-Calculators
-Curve examples
-Exercise books
KLB Secondary Mathematics Form 4, Pages 223-225
11 5
Integration
Introduction to Definite Integrals
Evaluating Definite Integrals
By the end of the lesson, the learner should be able to:

-Define definite integrals using limit notation
-Understand the difference between definite and indefinite integrals
-Learn proper notation: ∫ₐᵇ f(x)dx
-Understand geometric meaning as area under curve

-Introduction to definite integral concept and notation
-Geometric interpretation using simple curves
-Comparison between ∫f(x)dx and ∫ₐᵇf(x)dx
-Discussion on limits of integration
-Basic examples with simple functions
Graph papers
-Geometric models
-Integration notation charts
-Calculators
Calculators
-Step-by-step worksheets
-Exercise books
-Evaluation charts
KLB Secondary Mathematics Form 4, Pages 226-228
11 6
Integration
Area Under Curves - Single Functions
Areas Below X-axis and Mixed Regions
By the end of the lesson, the learner should be able to:

-Understand integration as area calculation tool
-Calculate area between curve and x-axis
-Handle regions bounded by curves and vertical lines
-Apply definite integrals to find exact areas

-Geometric demonstration of area under curves
-Drawing and shading regions on graph paper
-Working examples: area under y = x², y = 2x + 3, etc.
-Comparison with approximation methods from Chapter 9
-Practice finding areas of various regions
Graph papers
-Curve sketching tools
-Colored pencils
-Calculators
-Area grids
-Curve examples
-Colored materials
-Exercise books
KLB Secondary Mathematics Form 4, Pages 230-233
11 7
Integration
Area Between Two Curves
By the end of the lesson, the learner should be able to:

-Calculate area between two intersecting curves
-Find intersection points as integration limits
-Apply method: Area = ∫ₐᵇ [f(x) - g(x)]dx
-Handle multiple intersection scenarios

-Method for finding curve intersection points
-Working examples: area between y = x² and y = x
-Step-by-step process for area between curves
-Practice with linear and quadratic function pairs
-Advanced examples with multiple intersections
Graph papers
-Equation solving aids
-Calculators
-Colored pencils
-Exercise books
KLB Secondary Mathematics Form 4, Pages 233-235
12

Endterm examinations

13

Endterm exam marking and official closing


Your Name Comes Here


Download

Feedback