If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
OPENING FOR TERM ONE |
|||||||
| 2 | 1 |
Statistics II
|
Introduction to Advanced Statistics
Working Mean Concept |
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers -Sample datasets |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 2 | 2 |
Statistics II
|
Mean Using Working Mean - Simple Data
Mean Using Working Mean - Frequency Tables |
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers -Community data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 2 | 3 |
Statistics II
|
Mean for Grouped Data Using Working Mean
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 2 | 4 |
Statistics II
|
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles |
By the end of the
lesson, the learner
should be able to:
-Apply coding techniques with working mean -Divide by class width to simplify further -Use transformation methods efficiently -Solve complex grouped data problems |
-Demonstrate coding method on chalkboard -Show how dividing by class width helps -Practice reverse calculations to get original mean -Work with economic data from Kenya |
Exercise books
-Manila paper -Economic data -Chalk/markers -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 2 | 5 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 2 | 6 |
Statistics II
|
Deciles and Percentiles Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 2 | 7 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 3 | 1 |
Statistics II
|
Reading Values from Ogives
Applications of Ogives |
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler -Real problem datasets |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 3 | 2 |
Statistics II
|
Introduction to Measures of Dispersion
|
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 3 | 3 |
Statistics II
|
Range and Interquartile Range
Mean Absolute Deviation |
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 3 | 4 |
Statistics II
|
Introduction to Variance
Variance Using Alternative Formula |
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers -Frequency data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 3 | 5 |
Statistics II
|
Standard Deviation Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 3 | 6 |
Statistics II
|
Standard Deviation for Grouped Data
Advanced Standard Deviation Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 3 | 7 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
|
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 4 | 1 |
Trigonometry III
|
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Understand the derivation of fundamental identity -Apply Pythagoras theorem to unit circle -Use the identity to solve trigonometric equations -Convert between sin, cos using the identity |
-Demonstrate using right-angled triangle with hypotenuse 1 -Show algebraic derivation step by step -Practice substituting values to verify identity -Solve equations using the fundamental identity |
Exercise books
-Manila paper -Unit circle diagrams -Calculators -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 4 | 2 |
Trigonometry III
|
Additional Trigonometric Identities
Introduction to Waves |
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 4 | 3 |
Trigonometry III
|
Sine and Cosine Waves
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 4 | 4 |
Trigonometry III
|
Transformations of Sine Waves
Period Changes in Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on amplitude -Plot graphs of y = k sin x for different values of k -Compare transformed waves with basic sine wave -Apply amplitude changes to real situations |
-Plot y = 2 sin x, y = 3 sin x on manila paper -Compare amplitudes with y = sin x -Demonstrate stretching effect of coefficient -Apply to sound volume or signal strength examples |
Exercise books
-Manila paper -Colored pencils -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 4 | 5 |
Trigonometry III
|
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 4 | 6 |
Trigonometry III
|
General Trigonometric Functions
|
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 4 | 7 |
Trigonometry III
|
Cosine Wave Transformations
Introduction to Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Apply transformations to cosine functions -Plot y = a cos(bx + c) functions -Compare cosine and sine transformations -Use cosine functions in modeling |
-Plot various cosine transformations on manila paper -Compare with equivalent sine transformations -Practice identifying cosine wave parameters -Model temperature variations using cosine |
Exercise books
-Manila paper -Rulers -Temperature data -Unit circle diagrams -Trigonometric tables |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 5 | 1 |
Trigonometry III
|
Solving Basic Trigonometric Equations
Quadratic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations of form sin x = k, cos x = k -Find all solutions in specified ranges -Use symmetry properties of trigonometric functions -Apply inverse trigonometric functions |
-Work through sin x = 0.6 step by step -Find all solutions between 0° and 360° -Use calculator to find inverse trigonometric values -Practice with multiple basic equations |
Exercise books
-Manila paper -Calculators -Solution worksheets -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 5 | 2 |
Trigonometry III
|
Equations Involving Multiple Angles
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 5 | 3 |
Trigonometry III
|
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities |
By the end of the
lesson, the learner
should be able to:
-Solve equations graphically using intersections -Plot trigonometric functions on same axes -Find intersection points as equation solutions -Verify algebraic solutions graphically |
-Plot y = sin x and y = 0.5 on same axes -Identify intersection points as solutions -Use graphical method for complex equations -Compare graphical and algebraic solutions |
Exercise books
-Manila paper -Rulers -Graphing examples -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 5 | 4 |
Longitudes and Latitudes
|
Introduction to Earth as a Sphere
Great and Small Circles |
By the end of the
lesson, the learner
should be able to:
-Understand Earth as a sphere for mathematical purposes -Identify poles, equator, and axis of rotation -Recognize Earth's dimensions and basic structure -Connect Earth's rotation to day-night cycle |
-Use globe or spherical ball to demonstrate Earth -Identify North Pole, South Pole, and equator -Discuss Earth's rotation and its effects -Show axis of rotation through poles |
Exercise books
-Globe/spherical ball -Manila paper -Chalk/markers -Globe -String |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 5 | 5 |
Longitudes and Latitudes
|
Understanding Latitude
|
By the end of the
lesson, the learner
should be able to:
-Define latitude and its measurement -Identify equator as 0° latitude reference -Understand North and South latitude designations -Recognize that latitude ranges from 0° to 90° |
-Mark latitude lines on globe using tape -Show equator as reference line (0°) -Demonstrate measurement from equator to poles -Practice identifying latitude positions |
Exercise books
-Globe -Tape/string -Protractor |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 5 | 6 |
Longitudes and Latitudes
|
Properties of Latitude Lines
Understanding Longitude |
By the end of the
lesson, the learner
should be able to:
-Understand that latitude lines are parallel circles -Recognize that latitude lines are small circles (except equator) -Calculate radii of latitude circles using trigonometry -Apply formula r = R cos θ for latitude circle radius |
-Demonstrate parallel nature of latitude lines -Calculate radius of latitude circle at 60°N -Show relationship between latitude and circle size -Use trigonometry to find circle radii |
Exercise books
-Globe -Calculator -Manila paper -String -World map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 5 | 7 |
Longitudes and Latitudes
|
Properties of Longitude Lines
Position of Places on Earth |
By the end of the
lesson, the learner
should be able to:
-Understand that longitude lines are great circles -Recognize that all longitude lines pass through poles -Understand that longitude lines converge at poles -Identify that opposite longitudes differ by 180° |
-Show longitude lines converging at poles -Demonstrate that longitude lines are great circles -Find opposite longitude positions -Compare longitude and latitude line properties |
Exercise books
-Globe -String -Manila paper -World map -Kenya map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 6 | 1 |
Longitudes and Latitudes
|
Latitude and Longitude Differences
|
By the end of the
lesson, the learner
should be able to:
-Calculate latitude differences between two points -Calculate longitude differences between two points -Understand angular differences on same and opposite sides -Apply difference calculations to navigation problems |
-Calculate difference between Nairobi and Cairo -Practice with points on same and opposite sides -Work through systematic calculation methods -Apply to real navigation scenarios |
Exercise books
-Manila paper -Calculator -Navigation examples |
KLB Secondary Mathematics Form 4, Pages 139-143
|
|
| 6 | 2 |
Longitudes and Latitudes
|
Introduction to Distance Calculations
Distance Along Great Circles |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angles and distances -Learn that 1° on great circle = 60 nautical miles -Define nautical mile and its relationship to kilometers -Apply basic distance formulas for great circles |
-Demonstrate angle-distance relationship using globe -Show that 1' (minute) = 1 nautical mile -Convert between nautical miles and kilometers -Practice basic distance calculations |
Exercise books
-Globe -Calculator -Conversion charts -Manila paper -Real examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 6 | 3 |
Longitudes and Latitudes
|
Distance Along Small Circles (Parallels)
Shortest Distance Problems |
By the end of the
lesson, the learner
should be able to:
-Understand that parallel distances use different formula -Apply formula: distance = longitude difference × 60 × cos(latitude) -Calculate radius of latitude circles -Solve problems involving parallel of latitude distances |
-Derive formula using trigonometry -Calculate distance between Mombasa and Lagos -Show why latitude affects distance calculations -Practice with various latitude examples |
Exercise books
-Manila paper -Calculator -African city examples -Flight path examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 6 | 4 |
Longitudes and Latitudes
|
Advanced Distance Calculations
|
By the end of the
lesson, the learner
should be able to:
-Solve complex distance problems with multiple steps -Calculate distances involving multiple coordinate differences -Apply to surveying and mapping problems -Use systematic approaches for difficult calculations |
-Work through complex multi-step distance problems -Apply to surveying land boundaries -Calculate perimeters of geographical regions -Practice with examination-style problems |
Exercise books
-Manila paper -Calculator -Surveying examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 6 | 5 |
Longitudes and Latitudes
|
Introduction to Time and Longitude
Local Time Calculations |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between longitude and time -Learn that Earth rotates 360° in 24 hours -Calculate that 15° longitude = 1 hour time difference -Understand concept of local time |
-Demonstrate Earth's rotation using globe -Show how sun position determines local time -Calculate time differences for various longitudes -Apply to understanding sunrise/sunset times |
Exercise books
-Globe -Light source -Time zone examples -Manila paper -World time examples -Calculator |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 6 | 6 |
Longitudes and Latitudes
|
Greenwich Mean Time (GMT)
Complex Time Problems |
By the end of the
lesson, the learner
should be able to:
-Understand Greenwich as reference for world time -Calculate local times relative to GMT -Apply GMT to solve international time problems -Understand time zones and their practical applications |
-Use Greenwich as time reference point -Calculate local times for cities worldwide -Apply to international business scenarios -Discuss practical applications of GMT |
Exercise books
-Manila paper -World map -Time zone charts -International examples -Travel scenarios |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 6 | 7 |
Longitudes and Latitudes
|
Speed Calculations
|
By the end of the
lesson, the learner
should be able to:
-Define knot as nautical mile per hour -Calculate speeds in knots and km/h -Apply speed calculations to navigation problems -Solve problems involving time, distance, and speed |
-Calculate ship speeds in knots -Convert between knots and km/h -Apply to aircraft and ship navigation -Practice with maritime and aviation examples |
Exercise books
-Manila paper -Calculator -Navigation examples |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 7 | 1 |
Linear Programming
|
Introduction to Linear Programming
Forming Linear Inequalities from Word Problems |
By the end of the
lesson, the learner
should be able to:
-Understand the concept of optimization in real life -Identify decision variables in practical situations -Recognize constraints and objective functions -Understand applications of linear programming |
-Discuss resource allocation problems in daily life -Identify optimization scenarios in business and farming -Introduce decision-making with limited resources -Use simple examples from student experiences |
Exercise books
-Manila paper -Real-life examples -Chalk/markers -Local business examples -Agricultural scenarios |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 7 | 2 |
Linear Programming
|
Types of Constraints
Objective Functions |
By the end of the
lesson, the learner
should be able to:
-Identify non-negativity constraints -Understand resource constraints and their implications -Form demand and supply constraints -Apply constraint formation to various industries |
-Practice with non-negativity constraints (x ≥ 0, y ≥ 0) -Form material and labor constraints -Apply to manufacturing and service industries -Use school resource allocation examples |
Exercise books
-Manila paper -Industry examples -School scenarios -Business examples -Production scenarios |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 7-8 |
MID TERM ASSESSMENT AND BREAK |
|||||||
| 9 | 1 |
Linear Programming
|
Complete Problem Formulation
|
By the end of the
lesson, the learner
should be able to:
-Combine constraints and objective functions -Write complete linear programming problems -Check formulation for completeness and correctness -Apply systematic approach to problem setup |
-Work through complete problem formulation process -Practice with multiple constraint types -Verify problem setup using logical reasoning -Apply to comprehensive business scenarios |
Exercise books
-Manila paper -Complete examples -Systematic templates |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 9 | 2 |
Linear Programming
|
Introduction to Graphical Solution Method
Plotting Multiple Constraints |
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Plot constraint lines on coordinate plane -Identify feasible and infeasible regions -Understand boundary lines and their significance |
-Plot simple inequality x + y ≤ 10 on graph -Shade feasible regions systematically -Distinguish between ≤ and < inequalities -Practice with multiple examples on manila paper |
Exercise books
-Manila paper -Rulers -Colored pencils -Different colored pencils |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 9 | 3 |
Linear Programming
|
Properties of Feasible Regions
Introduction to Optimization |
By the end of the
lesson, the learner
should be able to:
-Understand that feasible region is convex -Identify corner points (vertices) of feasible region -Understand significance of corner points -Calculate coordinates of corner points |
-Identify all corner points of feasible region -Calculate intersection points algebraically -Verify corner points satisfy all constraints -Understand why corner points are important |
Exercise books
-Manila paper -Calculators -Algebraic methods -Evaluation tables |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 9 | 4 |
Linear Programming
|
The Corner Point Method
|
By the end of the
lesson, the learner
should be able to:
-Apply systematic corner point evaluation method -Create organized tables for corner point analysis -Identify optimal corner point efficiently -Handle cases with multiple optimal solutions |
-Create systematic evaluation table -Work through corner point method step-by-step -Practice with various objective functions -Identify and handle tie cases |
Exercise books
-Manila paper -Evaluation templates -Systematic approach |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 5 |
Linear Programming
|
The Iso-Profit/Iso-Cost Line Method
Comparing Solution Methods |
By the end of the
lesson, the learner
should be able to:
-Understand concept of iso-profit and iso-cost lines -Draw family of parallel objective function lines -Use slope to find optimal point graphically -Apply sliding line method for optimization |
-Draw iso-profit lines for given objective function -Show family of parallel lines with different values -Find optimal point by sliding line to extreme position -Practice with both maximization and minimization |
Exercise books
-Manila paper -Rulers -Sliding technique -Method comparison -Verification examples |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 6 |
Linear Programming
|
Business Applications - Production Planning
|
By the end of the
lesson, the learner
should be able to:
-Apply linear programming to production problems -Solve manufacturing optimization problems -Handle resource allocation in production -Apply to Kenyan manufacturing scenarios |
-Solve factory production optimization problem -Apply to textile or food processing examples -Use local manufacturing scenarios -Calculate optimal production mix |
Exercise books
-Manila paper -Manufacturing examples -Kenyan industry data |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 7 |
Differentiation
|
Introduction to Rate of Change
Average Rate of Change |
By the end of the
lesson, the learner
should be able to:
-Understand concept of rate of change in daily life -Distinguish between average and instantaneous rates -Identify examples of changing quantities -Connect rate of change to gradient concepts |
-Discuss speed as rate of change of distance -Examine population growth rates -Analyze temperature change throughout the day -Connect to gradients of lines from coordinate geometry |
Exercise books
-Manila paper -Real-world examples -Graph examples -Calculators -Graph paper |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
| 10 | 1 |
Differentiation
|
Instantaneous Rate of Change
Gradient of Curves at Points |
By the end of the
lesson, the learner
should be able to:
-Understand concept of instantaneous rate -Recognize instantaneous rate as limit of average rates -Connect to tangent line gradients -Apply to real-world motion problems |
-Demonstrate instantaneous speed using car speedometer -Show limiting process using smaller intervals -Connect to tangent line slopes on curves -Practice with motion and growth examples |
Exercise books
-Manila paper -Tangent demonstrations -Motion examples -Rulers -Curve examples |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
| 10 | 2 |
Differentiation
|
Introduction to Delta Notation
|
By the end of the
lesson, the learner
should be able to:
-Understand delta (Δ) notation for small changes -Use Δx and Δy for coordinate changes -Apply delta notation to rate calculations -Practice reading and writing delta expressions |
-Introduce delta as symbol for "change in" -Practice writing Δx, Δy, Δt expressions -Use delta notation in rate of change formulas -Apply to coordinate geometry problems |
Exercise books
-Manila paper -Delta notation examples -Symbol practice |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
| 10 | 3 |
Differentiation
|
The Limiting Process
Introduction to Derivatives |
By the end of the
lesson, the learner
should be able to:
-Understand concept of limit in differentiation -Apply "as Δx approaches zero" reasoning -Use limiting process to find exact derivatives -Practice systematic limiting calculations |
-Demonstrate limiting process with numerical examples -Show chord approaching tangent as Δx → 0 -Calculate limits using table of values -Practice systematic limit evaluation |
Exercise books
-Manila paper -Limit tables -Systematic examples -Derivative notation -Function examples |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
| 10 | 4 |
Differentiation
|
Derivative of Linear Functions
Derivative of y = x^n (Basic Powers) |
By the end of the
lesson, the learner
should be able to:
-Find derivatives of linear functions y = mx + c -Understand that derivative of linear function is constant -Apply to straight line gradient problems -Verify using limiting process |
-Find derivative of y = 3x + 2 using definition -Show that derivative equals the gradient -Practice with various linear functions -Verify results using first principles |
Exercise books
-Manila paper -Linear function examples -Verification methods -Power rule examples -First principles verification |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 5 |
Differentiation
|
Derivative of Constant Functions
|
By the end of the
lesson, the learner
should be able to:
-Understand that derivative of constant is zero -Apply to functions like y = 5, y = -3 -Explain geometric meaning of zero derivative -Combine with other differentiation rules |
-Show that horizontal lines have zero gradient -Find derivatives of constant functions -Explain why rate of change of constant is zero -Apply to mixed functions with constants |
Exercise books
-Manila paper -Constant function graphs -Geometric explanations |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 6 |
Differentiation
|
Derivative of Coefficient Functions
Derivative of Polynomial Functions |
By the end of the
lesson, the learner
should be able to:
-Find derivatives of functions like y = ax^n -Apply constant multiple rule -Practice with various coefficient values -Combine coefficient and power rules |
-Find derivative of y = 5x³ -Apply rule d/dx(af(x)) = a·f'(x) -Practice with negative coefficients -Combine multiple rules systematically |
Exercise books
-Manila paper -Coefficient examples -Rule combinations -Polynomial examples -Term-by-term method |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 7 |
Differentiation
|
Applications to Tangent Lines
Applications to Normal Lines |
By the end of the
lesson, the learner
should be able to:
-Find equations of tangent lines to curves -Use derivatives to find tangent gradients -Apply point-slope form for tangent equations -Solve problems involving tangent lines |
-Find tangent to y = x² at point (2, 4) -Use derivative to get gradient at specific point -Apply y - y₁ = m(x - x₁) formula -Practice with various curves and points |
Exercise books
-Manila paper -Tangent line examples -Point-slope applications -Normal line examples -Perpendicular concepts |
KLB Secondary Mathematics Form 4, Pages 187-189
|
|
| 11 | 1 |
Differentiation
|
Introduction to Stationary Points
|
By the end of the
lesson, the learner
should be able to:
-Define stationary points as points where dy/dx = 0 -Identify different types of stationary points -Understand geometric meaning of zero gradient -Find stationary points by solving dy/dx = 0 |
-Show horizontal tangents at stationary points -Find stationary points of y = x² - 4x + 3 -Identify maximum, minimum, and inflection points -Practice finding where dy/dx = 0 |
Exercise books
-Manila paper -Curve sketches -Stationary point examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
| 11 | 2 |
Differentiation
|
Types of Stationary Points
Finding and Classifying Stationary Points |
By the end of the
lesson, the learner
should be able to:
-Distinguish between maximum and minimum points -Identify points of inflection -Use first derivative test for classification -Apply gradient analysis around stationary points |
-Analyze gradient changes around stationary points -Use sign analysis of dy/dx -Classify stationary points by gradient behavior -Practice with various function types |
Exercise books
-Manila paper -Sign analysis charts -Classification examples -Systematic templates -Complete examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
| 11 | 3 |
Differentiation
|
Curve Sketching Using Derivatives
Introduction to Kinematics Applications |
By the end of the
lesson, the learner
should be able to:
-Use derivatives to sketch accurate curves -Identify key features: intercepts, stationary points -Apply systematic curve sketching method -Combine algebraic and graphical analysis |
-Sketch y = x³ - 3x² + 2 using derivatives -Find intercepts, stationary points, and behavior -Use systematic curve sketching approach -Verify sketches using derivative information |
Exercise books
-Manila paper -Curve sketching templates -Systematic method -Motion examples -Kinematics applications |
KLB Secondary Mathematics Form 4, Pages 195-197
|
|
| 11 | 4 |
Differentiation
|
Acceleration as Second Derivative
|
By the end of the
lesson, the learner
should be able to:
-Understand acceleration as derivative of velocity -Apply a = dv/dt = d²s/dt² notation -Find acceleration functions from displacement -Apply to motion analysis problems |
-Find acceleration from velocity functions -Use second derivative notation -Apply to projectile motion problems -Practice with particle motion scenarios |
Exercise books
-Manila paper -Second derivative examples -Motion analysis |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
| 11 | 5 |
Differentiation
|
Motion Problems and Applications
Introduction to Optimization |
By the end of the
lesson, the learner
should be able to:
-Solve complete motion analysis problems -Find displacement, velocity, acceleration relationships -Apply to real-world motion scenarios -Use derivatives for motion optimization |
-Analyze complete motion of falling object -Find when particle changes direction -Calculate maximum height in projectile motion -Apply to vehicle motion problems |
Exercise books
-Manila paper -Complete motion examples -Real scenarios -Optimization examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
| 11 | 6 |
Differentiation
|
Geometric Optimization Problems
Business and Economic Applications |
By the end of the
lesson, the learner
should be able to:
-Apply calculus to geometric optimization -Find maximum areas and minimum perimeters -Use derivatives for shape optimization -Apply to construction and design problems |
-Find dimensions for maximum area enclosure -Optimize container volumes and surface areas -Apply to architectural design problems -Practice with various geometric constraints |
Exercise books
-Manila paper -Geometric examples -Design applications -Business examples -Economic applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 11 | 7 |
Differentiation
|
Advanced Optimization Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve complex optimization with multiple constraints -Apply systematic optimization methodology -Use calculus for engineering applications -Practice with advanced real-world problems |
-Solve complex geometric optimization problems -Apply to engineering design scenarios -Use systematic optimization approach -Practice with multi-variable situations |
Exercise books
-Manila paper -Complex examples -Engineering applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 12-13 |
END TERM ASSESSMENT AND CLOSING |
|||||||
Your Name Comes Here