If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 3 | 1 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 3 | 2 |
Matrices and Transformation
|
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation Using the Unit Square Method |
By the end of the
lesson, the learner
should be able to:
-Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 3 | 3 |
Matrices and Transformation
|
Successive Transformations
Matrix Multiplication for Combined Transformations Single Matrix for Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand the concept of successive transformations -Apply transformations in correct order -Recognize that order matters in matrix multiplication -Perform multiple transformations step by step |
-Demonstrate successive transformations with paper cutouts -Practice applying transformations in sequence -Compare results when order is changed -Work through step-by-step examples |
Exercise books
-Manila paper -Ruler -Coloured pencils -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 3 | 4 |
Matrices and Transformation
|
Inverse of a Transformation
Properties of Inverse Transformations |
By the end of the
lesson, the learner
should be able to:
-Define inverse transformation conceptually -Find inverse matrices using algebraic methods -Apply inverse transformations to return objects to original position -Verify inverse relationships using matrix multiplication |
-Demonstrate inverse transformations geometrically -Practice finding inverse matrices algebraically -Verify that A × A⁻¹ = I -Apply inverse transformations to solve problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
| 3 | 5 |
Matrices and Transformation
|
Area Scale Factor and Determinant
Shear Transformations |
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
Exercise books -Cardboard pieces -Manila paper -Ruler |
|
|
| 3 | 6 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 3 | 7 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
Isometric and Non-isometric Transformations |
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers -Paper cutouts |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 4 | 1 |
Statistics II
|
Introduction to Advanced Statistics
|
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 4 | 2 |
Statistics II
|
Working Mean Concept
Mean Using Working Mean - Simple Data |
By the end of the
lesson, the learner
should be able to:
-Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Sample datasets -Chalk/markers -Student data |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 4 | 3 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 4 | 4 |
Statistics II
|
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers -Economic data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 4 | 5 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
|
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 4 | 6 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 4 | 7 |
Statistics II
|
Deciles and Percentiles Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 5 | 1 |
Statistics II
|
Introduction to Cumulative Frequency
|
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 5 | 2 |
Statistics II
|
Drawing Cumulative Frequency Curves (Ogives)
Reading Values from Ogives |
By the end of the
lesson, the learner
should be able to:
-Draw accurate ogives using proper scales -Plot cumulative frequency against upper boundaries -Create smooth curves through plotted points -Label axes and scales correctly |
-Practice plotting on large manila paper -Use rulers for accurate scales -Demonstrate smooth curve drawing technique -Students create their own ogives |
Exercise books
-Manila paper -Ruler -Pencils -Completed ogives |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 5 | 3 |
Statistics II
|
Applications of Ogives
|
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 5 | 4 |
Statistics II
|
Introduction to Measures of Dispersion
Range and Interquartile Range |
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers -Student data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 5 | 5 |
Statistics II
|
Mean Absolute Deviation
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean absolute deviation -Use absolute values correctly in calculations -Understand concept of average distance from mean -Apply MAD to compare variability in datasets |
-Calculate MAD for class test scores -Practice with absolute value calculations -Compare MAD values for different subjects -Interpret MAD in context of data spread |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 5 | 6 |
Statistics II
|
Introduction to Variance
Variance Using Alternative Formula |
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers -Frequency data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 5 | 7 |
Statistics II
|
Standard Deviation Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 6 | 1 |
Statistics II
|
Standard Deviation for Grouped Data
Advanced Standard Deviation Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 6 | 2 |
Loci
|
Introduction to Loci
|
By the end of the
lesson, the learner
should be able to:
-Define locus and understand its meaning -Distinguish between locus of points, lines, and regions -Identify real-world examples of loci -Understand the concept of movement according to given laws |
-Demonstrate door movement to show path traced by corner -Use string and pencil to show circular locus -Discuss examples: clock hands, pendulum swing -Students trace paths of moving objects |
Exercise books
-Manila paper -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
| 6 | 3 |
Loci
|
Basic Locus Concepts and Laws
Perpendicular Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Manila paper -String -Real objects -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
| 6 | 4 |
Loci
|
Properties and Applications of Perpendicular Bisector
|
By the end of the
lesson, the learner
should be able to:
-Understand perpendicular bisector in 3D space -Apply perpendicular bisector to find circumcenters -Solve practical problems using perpendicular bisector -Use perpendicular bisector in triangle constructions |
-Find circumcenter of triangle using perpendicular bisectors -Solve water pipe problems (equidistant from two points) -Apply to real-world location problems -Practice with various triangle types |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 6 | 5 |
Loci
|
Locus of Points at Fixed Distance from a Point
Locus of Points at Fixed Distance from a Line |
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String -Ruler -Set square |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 6 | 6 |
Loci
|
Angle Bisector Locus
|
By the end of the
lesson, the learner
should be able to:
-Define angle bisector locus -Construct angle bisectors using compass and ruler -Prove equidistance property of angle bisector -Apply angle bisector to find incenters |
-Construct angle bisectors for various angles -Verify equidistance from angle arms -Find incenter of triangle using angle bisectors -Practice with acute, obtuse, and right angles |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 6 | 7 |
Loci
|
Properties and Applications of Angle Bisector
Constant Angle Locus |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 7 | 1 |
Loci
|
Advanced Constant Angle Constructions
|
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 7 | 2 |
Loci
|
Introduction to Intersecting Loci
Intersecting Circles and Lines |
By the end of the
lesson, the learner
should be able to:
-Understand concept of intersecting loci -Identify points satisfying multiple conditions -Find intersection points of two loci -Apply intersecting loci to solve practical problems |
-Demonstrate intersection of two circles -Find points equidistant from two points AND at fixed distance from third point -Solve simple two-condition problems -Practice identifying intersection points |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 7 | 3 |
Loci
|
Triangle Centers Using Intersecting Loci
|
By the end of the
lesson, the learner
should be able to:
-Find circumcenter using perpendicular bisector intersections -Locate incenter using angle bisector intersections -Determine centroid and orthocenter -Apply triangle centers to solve problems |
-Construct all four triangle centers -Compare properties of different triangle centers -Use triangle centers in geometric proofs -Solve problems involving triangle center properties |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 7 | 4 |
Loci
|
Complex Intersecting Loci Problems
Introduction to Loci of Inequalities |
By the end of the
lesson, the learner
should be able to:
-Solve problems with three or more conditions -Find regions satisfying multiple constraints -Apply intersecting loci to optimization problems -Use systematic approach to complex problems |
-Solve treasure hunt type problems -Find optimal locations for facilities -Apply to surveying and engineering problems -Practice systematic problem-solving approach |
Exercise books
-Manila paper -Compass -Real-world scenarios -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 7 | 5 |
Loci
|
Distance Inequality Loci
|
By the end of the
lesson, the learner
should be able to:
-Represent distance inequalities graphically -Solve problems with "less than" and "greater than" distances -Find regions satisfying distance constraints -Apply to safety zone problems |
-Shade regions inside and outside circles -Solve exclusion zone problems -Apply to communication range problems -Practice with multiple distance constraints |
Exercise books
-Manila paper -Compass -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 7 | 6 |
Loci
|
Combined Inequality Loci
Advanced Inequality Applications |
By the end of the
lesson, the learner
should be able to:
-Solve problems with multiple inequality constraints -Find intersection regions of inequality loci -Apply to optimization and feasibility problems -Use systematic shading techniques |
-Find feasible regions for multiple constraints -Solve planning problems with restrictions -Apply to resource allocation scenarios -Practice systematic region identification |
Exercise books
-Manila paper -Ruler -Colored pencils -Real problem data |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 7 | 7 |
Loci
|
Introduction to Loci Involving Chords
|
By the end of the
lesson, the learner
should be able to:
-Review chord properties in circles -Understand perpendicular bisector of chords -Apply chord theorems to loci problems -Construct equal chords in circles |
-Review chord bisector theorem -Construct chords of given lengths -Find centers using chord properties -Practice with chord intersection theorems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 8 | 1 |
Loci
|
Chord-Based Constructions
Advanced Chord Problems |
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 8 | 2 |
Loci
|
Integration of All Loci Types
|
By the end of the
lesson, the learner
should be able to:
-Combine different types of loci in single problems -Solve comprehensive loci challenges -Apply multiple loci concepts simultaneously -Use loci in geometric investigations |
-Solve multi-step loci problems -Combine circle, line, and angle loci -Apply to real-world complex scenarios -Practice systematic problem-solving |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 73-94
|
|
| 8 | 3 |
Vectors (II)
|
Coordinates in two dimensions
Coordinates in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books |
KLB Mathematics Book Three Pg 221-222
|
|
| 8-9 |
Mid term break |
|||||||
| 9 | 2 |
Vectors (II)
|
Column and position vectors in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
|
KLB Mathematics Book Three Pg 223-224
|
|
| 9 | 3 |
Vectors (II)
|
Position vectors and applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
|
KLB Mathematics Book Three Pg 224
|
|
| 9 | 4 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
| 9 | 5 |
Vectors (II)
|
Magnitude of a vector in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
| 9 | 6 |
Vectors (II)
|
Magnitude applications and unit vectors
Parallel vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
| 9 | 7 |
Vectors (II)
|
Collinearity
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply vector methods to prove collinearity Test for collinear points using vector techniques Solve collinearity problems systematically |
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis Solving collinearity problems using systematic verification Demonstrations using straight-line point examples Explaining collinearity using geometric alignment concepts |
Chalk and blackboard, straight-line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
| 10 | 1 |
Vectors (II)
|
Advanced collinearity applications
Proportional division of a line |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
| 10 | 2 |
Vectors (II)
|
External division of a line
|
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
|
KLB Mathematics Book Three Pg 238-239
|
|
| 10 | 3 |
Vectors (II)
|
Combined internal and external division
Ratio theorem |
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books |
KLB Mathematics Book Three Pg 239
|
|
| 10 | 4 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
|
KLB Mathematics Book Three Pg 242
|
|
| 10 | 5 |
Vectors (II)
|
Mid-point
Ratio theorem and midpoint integration |
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books |
KLB Mathematics Book Three Pg 243
|
|
| 10 | 6 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
|
KLB Mathematics Book Three Pg 246-248
|
|
| 10 | 7 |
Vectors (II)
|
Applications of vectors in geometry
Rectangle diagonal applications Advanced geometric applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books Chalk and blackboard, advanced geometric models, exercise books |
KLB Mathematics Book Three Pg 248-249
|
|
| 11-12 |
End of term exam |
|||||||
| 13 |
Report |
|||||||
Your Name Comes Here