Home






SCHEME OF WORK
Mathematics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Differentiation
Introduction to Rate of Change
Average Rate of Change
By the end of the lesson, the learner should be able to:

-Understand concept of rate of change in daily life
-Distinguish between average and instantaneous rates
-Identify examples of changing quantities
-Connect rate of change to gradient concepts

-Discuss speed as rate of change of distance
-Examine population growth rates
-Analyze temperature change throughout the day
-Connect to gradients of lines from coordinate geometry
Exercise books
-Manila paper
-Real-world examples
-Graph examples
-Calculators
-Graph paper
KLB Secondary Mathematics Form 4, Pages 177-182
2 2
Differentiation
Instantaneous Rate of Change
Gradient of Curves at Points
By the end of the lesson, the learner should be able to:

-Understand concept of instantaneous rate
-Recognize instantaneous rate as limit of average rates
-Connect to tangent line gradients
-Apply to real-world motion problems

-Demonstrate instantaneous speed using car speedometer
-Show limiting process using smaller intervals
-Connect to tangent line slopes on curves
-Practice with motion and growth examples
Exercise books
-Manila paper
-Tangent demonstrations
-Motion examples
-Rulers
-Curve examples
KLB Secondary Mathematics Form 4, Pages 177-182
2 3
Differentiation
Introduction to Delta Notation
By the end of the lesson, the learner should be able to:

-Understand delta (Δ) notation for small changes
-Use Δx and Δy for coordinate changes
-Apply delta notation to rate calculations
-Practice reading and writing delta expressions

-Introduce delta as symbol for "change in"
-Practice writing Δx, Δy, Δt expressions
-Use delta notation in rate of change formulas
-Apply to coordinate geometry problems
Exercise books
-Manila paper
-Delta notation examples
-Symbol practice
KLB Secondary Mathematics Form 4, Pages 182-184
2 4-5
Differentiation
The Limiting Process
Introduction to Derivatives
Derivative of Linear Functions
Derivative of y = x^n (Basic Powers)
By the end of the lesson, the learner should be able to:

-Understand concept of limit in differentiation
-Apply "as Δx approaches zero" reasoning
-Use limiting process to find exact derivatives
-Practice systematic limiting calculations

-Find derivatives of linear functions y = mx + c
-Understand that derivative of linear function is constant
-Apply to straight line gradient problems
-Verify using limiting process

-Demonstrate limiting process with numerical examples
-Show chord approaching tangent as Δx → 0
-Calculate limits using table of values
-Practice systematic limit evaluation

-Find derivative of y = 3x + 2 using definition
-Show that derivative equals the gradient
-Practice with various linear functions
-Verify results using first principles
Exercise books
-Manila paper
-Limit tables
-Systematic examples
-Derivative notation
-Function examples
Exercise books
-Manila paper
-Linear function examples
-Verification methods
-Power rule examples
-First principles verification
KLB Secondary Mathematics Form 4, Pages 182-184
KLB Secondary Mathematics Form 4, Pages 184-188
2 6
Differentiation
Derivative of Constant Functions
By the end of the lesson, the learner should be able to:

-Understand that derivative of constant is zero
-Apply to functions like y = 5, y = -3
-Explain geometric meaning of zero derivative
-Combine with other differentiation rules

-Show that horizontal lines have zero gradient
-Find derivatives of constant functions
-Explain why rate of change of constant is zero
-Apply to mixed functions with constants
Exercise books
-Manila paper
-Constant function graphs
-Geometric explanations
KLB Secondary Mathematics Form 4, Pages 184-188
2 7
Differentiation
Derivative of Coefficient Functions
Derivative of Polynomial Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of functions like y = ax^n
-Apply constant multiple rule
-Practice with various coefficient values
-Combine coefficient and power rules

-Find derivative of y = 5x³
-Apply rule d/dx(af(x)) = a·f'(x)
-Practice with negative coefficients
-Combine multiple rules systematically
Exercise books
-Manila paper
-Coefficient examples
-Rule combinations
-Polynomial examples
-Term-by-term method
KLB Secondary Mathematics Form 4, Pages 184-188
3 1
Differentiation
Applications to Tangent Lines
Applications to Normal Lines
By the end of the lesson, the learner should be able to:

-Find equations of tangent lines to curves
-Use derivatives to find tangent gradients
-Apply point-slope form for tangent equations
-Solve problems involving tangent lines

-Find tangent to y = x² at point (2, 4)
-Use derivative to get gradient at specific point
-Apply y - y₁ = m(x - x₁) formula
-Practice with various curves and points
Exercise books
-Manila paper
-Tangent line examples
-Point-slope applications
-Normal line examples
-Perpendicular concepts
KLB Secondary Mathematics Form 4, Pages 187-189
3 2
Differentiation
Introduction to Stationary Points
By the end of the lesson, the learner should be able to:

-Define stationary points as points where dy/dx = 0
-Identify different types of stationary points
-Understand geometric meaning of zero gradient
-Find stationary points by solving dy/dx = 0

-Show horizontal tangents at stationary points
-Find stationary points of y = x² - 4x + 3
-Identify maximum, minimum, and inflection points
-Practice finding where dy/dx = 0
Exercise books
-Manila paper
-Curve sketches
-Stationary point examples
KLB Secondary Mathematics Form 4, Pages 189-195
3 3
Differentiation
Types of Stationary Points
Finding and Classifying Stationary Points
By the end of the lesson, the learner should be able to:

-Distinguish between maximum and minimum points
-Identify points of inflection
-Use first derivative test for classification
-Apply gradient analysis around stationary points

-Analyze gradient changes around stationary points
-Use sign analysis of dy/dx
-Classify stationary points by gradient behavior
-Practice with various function types
Exercise books
-Manila paper
-Sign analysis charts
-Classification examples
-Systematic templates
-Complete examples
KLB Secondary Mathematics Form 4, Pages 189-195
3 4-5
Differentiation
Curve Sketching Using Derivatives
Introduction to Kinematics Applications
Acceleration as Second Derivative
By the end of the lesson, the learner should be able to:

-Use derivatives to sketch accurate curves
-Identify key features: intercepts, stationary points
-Apply systematic curve sketching method
-Combine algebraic and graphical analysis

-Understand acceleration as derivative of velocity
-Apply a = dv/dt = d²s/dt² notation
-Find acceleration functions from displacement
-Apply to motion analysis problems

-Sketch y = x³ - 3x² + 2 using derivatives
-Find intercepts, stationary points, and behavior
-Use systematic curve sketching approach
-Verify sketches using derivative information

-Find acceleration from velocity functions
-Use second derivative notation
-Apply to projectile motion problems
-Practice with particle motion scenarios
Exercise books
-Manila paper
-Curve sketching templates
-Systematic method
-Motion examples
-Kinematics applications
Exercise books
-Manila paper
-Second derivative examples
-Motion analysis
KLB Secondary Mathematics Form 4, Pages 195-197
KLB Secondary Mathematics Form 4, Pages 197-201
3 6
Differentiation
Motion Problems and Applications
Introduction to Optimization
By the end of the lesson, the learner should be able to:

-Solve complete motion analysis problems
-Find displacement, velocity, acceleration relationships
-Apply to real-world motion scenarios
-Use derivatives for motion optimization

-Analyze complete motion of falling object
-Find when particle changes direction
-Calculate maximum height in projectile motion
-Apply to vehicle motion problems
Exercise books
-Manila paper
-Complete motion examples
-Real scenarios
-Optimization examples
-Real applications
KLB Secondary Mathematics Form 4, Pages 197-201
3 7
Differentiation
Geometric Optimization Problems
Business and Economic Applications
By the end of the lesson, the learner should be able to:

-Apply calculus to geometric optimization
-Find maximum areas and minimum perimeters
-Use derivatives for shape optimization
-Apply to construction and design problems

-Find dimensions for maximum area enclosure
-Optimize container volumes and surface areas
-Apply to architectural design problems
-Practice with various geometric constraints
Exercise books
-Manila paper
-Geometric examples
-Design applications
-Business examples
-Economic applications
KLB Secondary Mathematics Form 4, Pages 201-204
4 1
Differentiation
Integration
Advanced Optimization Problems
Introduction to Reverse Differentiation
By the end of the lesson, the learner should be able to:

-Solve complex optimization with multiple constraints
-Apply systematic optimization methodology
-Use calculus for engineering applications
-Practice with advanced real-world problems

-Solve complex geometric optimization problems
-Apply to engineering design scenarios
-Use systematic optimization approach
-Practice with multi-variable situations
Exercise books
-Manila paper
-Complex examples
-Engineering applications
Graph papers
-Differentiation charts
-Exercise books
-Function examples
KLB Secondary Mathematics Form 4, Pages 201-204
4 2
Integration
Basic Integration Rules - Power Functions
Integration of Polynomial Functions
Finding Particular Solutions
By the end of the lesson, the learner should be able to:

-Apply power rule for integration: ∫xⁿ dx = xⁿ⁺¹/(n+1) + c
-Understand the constant of integration and why it's necessary
-Integrate simple power functions where n ≠ -1
-Practice with positive, negative, and fractional powers

-Derivation of power rule through reverse differentiation
-Multiple examples with different values of n
-Explanation of arbitrary constant using family of curves
-Practice exercises with various power functions
-Common mistakes discussion and correction
Calculators
-Graph papers
-Power rule charts
-Exercise books
-Algebraic worksheets
-Polynomial examples
Graph papers
-Calculators
-Curve examples
KLB Secondary Mathematics Form 4, Pages 223-225
4 3
Integration
Introduction to Definite Integrals
Evaluating Definite Integrals
Area Under Curves - Single Functions
Areas Below X-axis and Mixed Regions
By the end of the lesson, the learner should be able to:

-Define definite integrals using limit notation
-Understand the difference between definite and indefinite integrals
-Learn proper notation: ∫ₐᵇ f(x)dx
-Understand geometric meaning as area under curve

-Introduction to definite integral concept and notation
-Geometric interpretation using simple curves
-Comparison between ∫f(x)dx and ∫ₐᵇf(x)dx
-Discussion on limits of integration
-Basic examples with simple functions
Graph papers
-Geometric models
-Integration notation charts
-Calculators
Calculators
-Step-by-step worksheets
-Exercise books
-Evaluation charts
-Curve sketching tools
-Colored pencils
-Area grids
-Curve examples
-Colored materials
KLB Secondary Mathematics Form 4, Pages 226-228
4 4-5
Integration
Vectors (II)
Area Between Two Curves
Coordinates in two dimensions
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:

-Calculate area between two intersecting curves
-Find intersection points as integration limits
-Apply method: Area = ∫ₐᵇ [f(x) - g(x)]dx
-Handle multiple intersection scenarios
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems

-Method for finding curve intersection points
-Working examples: area between y = x² and y = x
-Step-by-step process for area between curves
-Practice with linear and quadratic function pairs
-Advanced examples with multiple intersections
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Graph papers
-Equation solving aids
-Calculators
-Colored pencils
-Exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Secondary Mathematics Form 4, Pages 233-235
KLB Mathematics Book Three Pg 222
4 6
Vectors (II)
Column and position vectors in three dimensions
Position vectors and applications
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books
KLB Mathematics Book Three Pg 223-224
4 7
Vectors (II)
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Convert between column and unit vector notation
Understand the standard basis vector system
Apply unit vector representation systematically
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods
Solving unit vector problems using systematic conversion
Demonstrations using perpendicular direction examples
Explaining basis vector concepts using coordinate axes
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books
KLB Mathematics Book Three Pg 226-228
5 1
Vectors (II)
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Apply the 3D magnitude formula systematically
Find vector lengths in spatial contexts
Solve magnitude problems accurately
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques
Solving 3D magnitude problems using systematic calculation
Demonstrations using 3D distance examples
Explaining 3D magnitude using practical spatial examples
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 229-230
5 2
Vectors (II)
Magnitude applications and unit vectors
Parallel vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 229-230
5 3
Vectors (II)
Collinearity
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
5 4-5
Vectors (II)
Proportional division of a line
External division of a line
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Divide a line externally in the given ratio
Apply the external division formula
Distinguish between internal and external division
Solve external division problems accurately
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods
Solving external division problems using careful approaches
Demonstrations using external point construction examples
Explaining external division using extended line concepts
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 237-238
KLB Mathematics Book Three Pg 238-239
5 6
Vectors (II)
Ratio theorem
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 240-242
5 7
Vectors (II)
Mid-point
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 243
6 1
Vectors (II)
Ratio theorem and midpoint integration
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 244-245
6 2
Vectors (II)
Applications of vectors in geometry
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-249
6 3
Vectors (II)
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250
6 4-5
Binomial Expansion
Binomial expansions up to power four
Binomial expansions up to power four (continued)
Pascal's triangle
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Apply systematic multiplication methods
Recognize coefficient patterns in expansions
Use multiplication to expand binomial expressions
Use Pascal's triangle
Construct Pascal's triangle systematically
Apply triangle coefficients for binomial expansions
Recognize number patterns in the triangle
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods
Solving basic binomial multiplication problems
Demonstrations using area models and rectangular arrangements
Explaining pattern recognition using organized layouts
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis
Solving triangle construction and application problems
Demonstrations using visual triangle building
Explaining pattern connections using systematic observation
Chalk and blackboard, rectangular cutouts from paper, exercise books
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 256
KLB Mathematics Book Three Pg 256-257
6 6
Binomial Expansion
Pascal's triangle (continued)
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Chalk and blackboard, advanced triangle patterns, exercise books
KLB Mathematics Book Three Pg 258-259
6 7
Binomial Expansion
Pascal's triangle advanced
Applications to numerical cases
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply general binomial theorem concepts
Understand combination notation in expansions
Use general term formula applications
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles
Solving general term problems using formula application
Demonstrations using systematic formula usage
Explaining general principles using algebraic reasoning
Chalk and blackboard, combination calculation aids, exercise books
Chalk and blackboard, simple calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
7

Mid-term Exam

7 6
Binomial Expansion
Probability
Applications to numerical cases (continued)
Introduction
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply binomial methods to complex calculations
Handle decimal approximations using expansions
Solve practical numerical problems
Q/A on advanced numerical applications using complex scenarios
Discussions on decimal approximation using expansion techniques
Solving challenging numerical problems using systematic methods
Demonstrations using detailed calculation procedures
Explaining practical relevance using real-world examples
Chalk and blackboard, advanced calculation examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 259-260
7 7
Probability
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
8-9

Half-Term

9 2
Probability
Experimental Probability applications
Range of Probability Measure
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books
KLB Mathematics Book Three Pg 262-264
9 3
Probability
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Define sample space systematically
List all possible outcomes
Apply sample space concepts
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification
Solving sample space problems using organized listing
Demonstrations using dice, cards, and spinner examples
Explaining probability calculation using outcome counting
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 266-267
9 4-5
Probability
Theoretical Probability
Theoretical Probability advanced
Theoretical Probability applications
Combined Events
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 266-268
KLB Mathematics Book Three Pg 268-270
9 6
Probability
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-274
9 7
Probability
Independent Events
Independent Events advanced
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
KLB Mathematics Book Three Pg 274-275
10 1
Probability
Independent Events applications
Tree Diagrams
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply independence to practical problems
Solve complex multi-event scenarios
Integrate independence with other concepts
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies
Solving advanced combined problems using integrated approaches
Demonstrations using complex experimental scenarios
Explaining strategic problem-solving using logical analysis
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 278-280
10 2
Probability
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 283-285
10 3
Compound Proportion and Rates of Work
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 288-290
10 4-5
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
Rates of Work
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
Chalk and blackboard, work scenario examples, exercise books
KLB Mathematics Book Three Pg 291-293
KLB Mathematics Book Three Pg 294-295
10 6
Compound Proportion and Rates of Work
Graphical Methods
Rates of Work and Mixtures
Tables of given relations
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Apply work rates to complex scenarios
Handle mixture problems and combinations
Solve advanced rate and mixture problems
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples
Solving challenging rate and mixture problems using systematic approaches
Demonstrations using cooking, construction, and manufacturing examples
Explaining mixture concepts using practical applications
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 295-296
10 7
Graphical Methods
Graphs of given relations
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 300
11 1
Graphical Methods
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 301
11 2
Graphical Methods
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
11 3
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
11 4-5
Graphical Methods
Advanced average rates
Introduction to instantaneous rates
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Calculate the rate of change at an instant
Understand instantaneous rate concepts
Distinguish between average and instantaneous rates
Apply instant rate methods
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences
Solving basic instantaneous rate problems
Demonstrations using tangent line concepts
Explaining instantaneous rate using practical examples
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 304-310
KLB Mathematics Book Three Pg 310-311
11 6
Graphical Methods
Advanced instantaneous rates
Empirical graphs
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 310-315
11 7
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321
12

End-Term Exam

13

Marking and Closing


Your Name Comes Here


Download

Feedback