If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 3 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 1 | 4 |
Matrices and Transformation
|
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation |
By the end of the
lesson, the learner
should be able to:
-Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
| 1 | 5 |
Matrices and Transformation
|
Using the Unit Square Method
Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Use unit square to find transformation matrices -Read matrix elements directly from unit square images -Apply unit square method to various transformations -Compare unit square method with algebraic method |
-Demonstrate unit square method systematically -Practice reading transformation matrices from diagrams -Apply method to reflections, rotations, enlargements -Compare efficiency of different methods |
Exercise books
-Manila paper -Ruler -String -Coloured pencils |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
| 1 | 6 |
Matrices and Transformation
|
Matrix Multiplication for Combined Transformations
Single Matrix for Successive Transformations Inverse of a Transformation |
By the end of the
lesson, the learner
should be able to:
-Multiply 2×2 matrices to find combined transformations -Apply matrix multiplication rules correctly -Verify combined transformations geometrically -Solve problems involving multiple transformations |
-Practice matrix multiplication systematically on chalkboard -Verify results by applying to test objects -Work through complex transformation sequences -Check computations step by step |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
| 1 | 7 |
Matrices and Transformation
|
Properties of Inverse Transformations
|
By the end of the
lesson, the learner
should be able to:
-Calculate determinants of 2×2 matrices -Use determinant formula for matrix inverses -Identify when inverse matrices exist -Apply inverse matrix formula efficiently |
-Practice determinant calculations on chalkboard -Use formula: A⁻¹ = (1/det A) × adj A -Identify singular matrices (det = 0) -Solve systems using inverse matrices |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
| 2 | 1 |
Matrices and Transformation
|
Area Scale Factor and Determinant
|
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
|
|
|
| 2 | 2 |
Matrices and Transformation
|
Shear Transformations
Stretch Transformations |
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler -Rubber bands |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 2 | 3 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
| 2 | 4 |
Matrices and Transformation
|
Isometric and Non-isometric Transformations
|
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type |
Exercise books
-Paper cutouts -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 35-38
|
|
| 2 | 5 |
Statistics II
|
Introduction to Advanced Statistics
|
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 2 | 6 |
Statistics II
|
Working Mean Concept
|
By the end of the
lesson, the learner
should be able to:
-Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Sample datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
| 2 | 7 |
Statistics II
|
Mean Using Working Mean - Simple Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 1 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
Mean for Grouped Data Using Working Mean |
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers -Real datasets |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 2 |
Statistics II
|
Advanced Working Mean Techniques
|
By the end of the
lesson, the learner
should be able to:
-Apply coding techniques with working mean -Divide by class width to simplify further -Use transformation methods efficiently -Solve complex grouped data problems |
-Demonstrate coding method on chalkboard -Show how dividing by class width helps -Practice reverse calculations to get original mean -Work with economic data from Kenya |
Exercise books
-Manila paper -Economic data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
| 3 | 3 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
|
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 4 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
|
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 5 |
Statistics II
|
Quartiles for Grouped Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate quartiles using interpolation formula -Identify quartile classes correctly -Apply the formula: Q = L + [(n/4 - CF)/f] × h -Solve problems with continuous grouped data |
-Work through detailed examples on chalkboard -Practice identifying quartile positions -Use cumulative frequency systematically -Apply to real examination grade data |
Exercise books
-Manila paper -Grade data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 6 |
Statistics II
|
Deciles and Percentiles Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
| 3 | 7 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 4 |
OPENER EXAMINATIONS |
|||||||
| 5 | 1 |
Statistics II
|
Reading Values from Ogives
|
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 5 | 2 |
Statistics II
|
Applications of Ogives
|
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
| 5 | 3 |
Statistics II
|
Introduction to Measures of Dispersion
|
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 5 | 4 |
Statistics II
|
Range and Interquartile Range
|
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
| 5 | 5 |
Statistics II
|
Mean Absolute Deviation
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean absolute deviation -Use absolute values correctly in calculations -Understand concept of average distance from mean -Apply MAD to compare variability in datasets |
-Calculate MAD for class test scores -Practice with absolute value calculations -Compare MAD values for different subjects -Interpret MAD in context of data spread |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 5 | 6 |
Statistics II
|
Introduction to Variance
Variance Using Alternative Formula |
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers -Frequency data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 5 | 7 |
Statistics II
|
Standard Deviation Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 6 | 1 |
Statistics II
|
Standard Deviation for Grouped Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 6 | 2 |
Statistics II
Matrices |
Advanced Standard Deviation Techniques
Introduction and real-life applications |
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers Old newspapers with league tables, chalk and blackboard, exercise books |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
| 6 | 3 |
Matrices
|
Order of a matrix and elements
Square matrices, row and column matrices |
By the end of the
lesson, the learner
should be able to:
Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops |
KLB Mathematics Book Three Pg 169-170
|
|
| 6 | 4 |
Matrices
|
Addition of matrices
Subtraction of matrices |
By the end of the
lesson, the learner
should be able to:
Add matrices of the same order Apply matrix addition rules correctly Understand compatibility for addition Solve matrix addition problems systematically |
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters Solving basic addition using blackboard work Demonstrations using physical counting objects Explaining compatibility using size comparisons |
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard |
KLB Mathematics Book Three Pg 170-171
|
|
| 6 | 5 |
Matrices
|
Combined addition and subtraction
Scalar multiplication |
By the end of the
lesson, the learner
should be able to:
Perform multiple matrix operations Apply order of operations in matrix calculations Solve complex combined problems Demonstrate systematic problem-solving |
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach Solving multi-step problems using organized methods Demonstrations using systematic blackboard work Explaining operation sequencing using flowcharts |
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 171-174
|
|
| 6 | 6 |
Matrices
|
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Understand matrix multiplication prerequisites Learn compatibility requirements for multiplication Apply row-by-column multiplication method Calculate simple matrix products |
Q/A on multiplication compatibility using dimensions
Discussions on row-column method using finger tracing Solving basic multiplication using dot product method Demonstrations using physical row-column matching Explaining order requirements using practical examples |
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-176
|
|
| 6 | 7 |
Matrices
|
Matrix multiplication (larger matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
| 7 | 1 |
Matrices
|
Properties of matrix multiplication
|
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
|
KLB Mathematics Book Three Pg 174-179
|
|
| 7 | 2 |
Matrices
|
Real-world matrix multiplication applications
Identity matrix |
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper |
KLB Mathematics Book Three Pg 176-179
|
|
| 7 | 3 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
| 7 | 4 |
Matrices
|
Inverse of 2×2 matrices - theory
|
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
|
KLB Mathematics Book Three Pg 183-185
|
|
| 7 | 5 |
Matrices
|
Inverse of 2×2 matrices - practice
|
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
|
KLB Mathematics Book Three Pg 185-187
|
|
| 7 | 6 |
Matrices
|
Introduction to solving simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
|
KLB Mathematics Book Three Pg 188-189
|
|
| 7 | 7 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
| 8 |
MIDTERM EXAMINATIONS AND BREAK |
|||||||
| 9 | 1 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
| 9 | 2 |
Matrices
|
Transpose of matrices
|
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
|
KLB Mathematics Book Three Pg 170-174
|
|
| 9 | 3 |
Matrices
|
Matrix equation solving
|
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
|
KLB Mathematics Book Three Pg 183-190
|
|
| 9 | 4 |
Vectors (II)
|
Coordinates in two dimensions
|
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
|
KLB Mathematics Book Three Pg 221-222
|
|
| 9 | 5 |
Vectors (II)
|
Coordinates in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in three dimensions Understand the three-dimensional coordinate system Plot points in 3D space systematically Apply 3D coordinates to spatial problems |
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements Solving 3D coordinate problems using systematic approaches Demonstrations using classroom corners and building structures Explaining 3D visualization using physical room examples |
Chalk and blackboard, 3D models made from sticks and clay, exercise books
|
KLB Mathematics Book Three Pg 222
|
|
| 9 | 6 |
Vectors (II)
|
Column and position vectors in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
|
KLB Mathematics Book Three Pg 223-224
|
|
| 9 | 7 |
Vectors (II)
|
Position vectors and applications
Column vectors in terms of unit vectors i, j, k |
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books |
KLB Mathematics Book Three Pg 224
|
|
| 10 | 1 |
Vectors (II)
|
Vector operations using unit vectors
|
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Perform vector addition using unit vector notation Calculate vector subtraction with i, j, k components Apply scalar multiplication to unit vectors |
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods Solving vector operation problems using organized approaches Demonstrations using component separation and combination Explaining operation logic using algebraic reasoning |
Chalk and blackboard, component calculation aids, exercise books
|
KLB Mathematics Book Three Pg 226-228
|
|
| 10 | 2 |
Vectors (II)
|
Magnitude of a vector in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
| 10 | 3 |
Vectors (II)
|
Magnitude applications and unit vectors
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
| 10 | 4 |
Vectors (II)
|
Parallel vectors
|
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning |
Chalk and blackboard, parallel line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 231-232
|
|
| 10 | 5 |
Vectors (II)
|
Collinearity
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply vector methods to prove collinearity Test for collinear points using vector techniques Solve collinearity problems systematically |
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis Solving collinearity problems using systematic verification Demonstrations using straight-line point examples Explaining collinearity using geometric alignment concepts |
Chalk and blackboard, straight-line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
| 10 | 6 |
Vectors (II)
|
Advanced collinearity applications
Proportional division of a line |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
| 10 | 7 |
Vectors (II)
|
External division of a line
|
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
|
KLB Mathematics Book Three Pg 238-239
|
|
| 11 | 1 |
Vectors (II)
|
Combined internal and external division
|
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
|
KLB Mathematics Book Three Pg 239
|
|
| 11 | 2 |
Vectors (II)
|
Ratio theorem
|
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
|
KLB Mathematics Book Three Pg 240-242
|
|
| 11 | 3 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
|
KLB Mathematics Book Three Pg 242
|
|
| 11 | 4 |
Vectors (II)
|
Mid-point
|
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
|
KLB Mathematics Book Three Pg 243
|
|
| 11 | 5 |
Vectors (II)
|
Ratio theorem and midpoint integration
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books |
KLB Mathematics Book Three Pg 244-245
|
|
| 11 | 6 |
Vectors (II)
|
Applications of vectors in geometry
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
|
KLB Mathematics Book Three Pg 248-249
|
|
| 11 | 7 |
Vectors (II)
|
Rectangle diagonal applications
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning |
Chalk and blackboard, rectangle models, exercise books
|
KLB Mathematics Book Three Pg 248-250
|
|
| 12 |
ENDTERM EXAMINATIONS |
|||||||
| 13 |
MARKING AND CLOSING SCHOOL |
|||||||
| 14 | 1 |
Vectors (II)
|
Advanced geometric applications
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, advanced geometric models, exercise books
|
KLB Mathematics Book Three Pg 248-250
|
|
Your Name Comes Here