Home






SCHEME OF WORK
Mathematics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 3
Matrices and Transformation
Matrices of Transformation
By the end of the lesson, the learner should be able to:

-Define transformation and identify types
-Recognize that matrices can represent transformations
-Apply 2×2 matrices to position vectors
-Relate matrix operations to geometric transformations

-Review transformation concepts from Form 2
-Demonstrate matrix multiplication using position vectors
-Plot objects and images on coordinate plane
-Practice identifying transformations from images
Exercise books
-Manila paper
-Ruler
-Pencils
KLB Secondary Mathematics Form 4, Pages 1-5
1 4
Matrices and Transformation
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation
By the end of the lesson, the learner should be able to:

-Identify matrices for reflection, rotation, enlargement
-Describe transformations represented by given matrices
-Apply identity matrix and understand its effect
-Distinguish between different types of transformations

-Use unit square drawn on paper to identify transformations
-Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1)
-Draw objects and images under various transformations
-Q&A on transformation properties
Exercise books
-Manila paper
-Ruler
-String
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 1-5
1 5
Matrices and Transformation
Using the Unit Square Method
Successive Transformations
By the end of the lesson, the learner should be able to:

-Use unit square to find transformation matrices
-Read matrix elements directly from unit square images
-Apply unit square method to various transformations
-Compare unit square method with algebraic method

-Demonstrate unit square method systematically
-Practice reading transformation matrices from diagrams
-Apply method to reflections, rotations, enlargements
-Compare efficiency of different methods
Exercise books
-Manila paper
-Ruler
-String
-Coloured pencils
KLB Secondary Mathematics Form 4, Pages 6-16
1 6
Matrices and Transformation
Matrix Multiplication for Combined Transformations
Single Matrix for Successive Transformations
Inverse of a Transformation
By the end of the lesson, the learner should be able to:

-Multiply 2×2 matrices to find combined transformations
-Apply matrix multiplication rules correctly
-Verify combined transformations geometrically
-Solve problems involving multiple transformations

-Practice matrix multiplication systematically on chalkboard
-Verify results by applying to test objects
-Work through complex transformation sequences
-Check computations step by step
Exercise books
-Manila paper
-Ruler
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 16-24
1 7
Matrices and Transformation
Properties of Inverse Transformations
By the end of the lesson, the learner should be able to:

-Calculate determinants of 2×2 matrices
-Use determinant formula for matrix inverses
-Identify when inverse matrices exist
-Apply inverse matrix formula efficiently

-Practice determinant calculations on chalkboard
-Use formula: A⁻¹ = (1/det A) × adj A
-Identify singular matrices (det = 0)
-Solve systems using inverse matrices
Exercise books
-Manila paper
-Ruler
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 24-26
2 1
Matrices and Transformation
Area Scale Factor and Determinant
By the end of the lesson, the learner should be able to:

-Establish relationship between area scale factor and determinant
-Calculate area scale factors for transformations
-Apply determinant to find area changes
-Solve problems involving area transformations

-Measure areas of objects and images using grid paper
-Calculate determinants and compare with area ratios
-Practice with various transformation types
-Verify the relationship: ASF =
det A
2 2
Matrices and Transformation
Shear Transformations
Stretch Transformations
By the end of the lesson, the learner should be able to:

-Define shear transformation and its properties
-Identify invariant lines in shear transformations
-Construct matrices for shear transformations
-Apply shear transformations to geometric objects

-Demonstrate shear using cardboard models
-Identify x-axis and y-axis invariant shears
-Practice constructing shear matrices
-Apply shears to triangles and rectangles
Exercise books
-Cardboard pieces
-Manila paper
-Ruler
-Rubber bands
KLB Secondary Mathematics Form 4, Pages 28-34
2 3
Matrices and Transformation
Combined Shear and Stretch Problems
By the end of the lesson, the learner should be able to:

-Apply shear and stretch transformations in combination
-Solve complex transformation problems
-Identify transformation types from matrices
-Calculate areas under shear and stretch transformations

-Work through complex transformation sequences
-Practice identifying transformation types
-Calculate area changes under different transformations
-Solve real-world applications
Exercise books
-Manila paper
-Ruler
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 28-34
2 4
Matrices and Transformation
Isometric and Non-isometric Transformations
By the end of the lesson, the learner should be able to:

-Distinguish between isometric and non-isometric transformations
-Classify transformations based on shape and size preservation
-Identify isometric transformations from matrices
-Apply classification to solve problems

-Compare congruent and non-congruent images using cutouts
-Classify transformations systematically
-Practice identification from matrices
-Discuss real-world applications of each type
Exercise books
-Paper cutouts
-Manila paper
-Ruler
KLB Secondary Mathematics Form 4, Pages 35-38
2 5
Statistics II
Introduction to Advanced Statistics
By the end of the lesson, the learner should be able to:

-Review measures of central tendency from Form 2
-Identify limitations of simple mean calculations
-Understand need for advanced statistical methods
-Recognize patterns in large datasets

-Review mean, median, mode from previous work
-Discuss challenges with large numbers
-Examine real data from Kenya (population, rainfall)
-Q&A on statistical applications in daily life
Exercise books
-Manila paper
-Real data examples
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 39-42
2 6
Statistics II
Working Mean Concept
By the end of the lesson, the learner should be able to:

-Define working mean (assumed mean)
-Explain why working mean simplifies calculations
-Identify appropriate working mean values
-Apply working mean to reduce calculation errors

-Demonstrate calculation difficulties with large numbers
-Show how working mean simplifies arithmetic
-Practice selecting suitable working means
-Compare results with and without working mean
Exercise books
-Manila paper
-Sample datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 39-42
2 7
Statistics II
Mean Using Working Mean - Simple Data
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for ungrouped data
-Apply the formula: mean = working mean + mean of deviations
-Verify results using direct calculation method
-Solve problems with whole numbers

-Work through step-by-step examples on chalkboard
-Practice with student marks and heights data
-Verify answers using traditional method
-Individual practice with guided support
Exercise books
-Manila paper
-Student data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
3 1
Statistics II
Mean Using Working Mean - Frequency Tables
Mean for Grouped Data Using Working Mean
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for frequency data
-Apply working mean to discrete frequency distributions
-Use the formula with frequencies correctly
-Solve real-world problems with frequency data

-Demonstrate with family size data from local community
-Practice calculating fx and fd systematically
-Work through examples step-by-step
-Students practice with their own collected data
Exercise books
-Manila paper
-Community data
-Chalk/markers
-Real datasets
KLB Secondary Mathematics Form 4, Pages 42-48
3 2
Statistics II
Advanced Working Mean Techniques
By the end of the lesson, the learner should be able to:

-Apply coding techniques with working mean
-Divide by class width to simplify further
-Use transformation methods efficiently
-Solve complex grouped data problems

-Demonstrate coding method on chalkboard
-Show how dividing by class width helps
-Practice reverse calculations to get original mean
-Work with economic data from Kenya
Exercise books
-Manila paper
-Economic data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 42-48
3 3
Statistics II
Introduction to Quartiles, Deciles, Percentiles
By the end of the lesson, the learner should be able to:

-Define quartiles, deciles, and percentiles
-Understand how they divide data into parts
-Explain the relationship between these measures
-Identify their importance in data analysis

-Use physical demonstration with student heights
-Arrange 20 students by height to show quartiles
-Explain percentile ranks in exam results
-Discuss applications in grading systems
Exercise books
-Manila paper
-Student height data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 49-52
3 4
Statistics II
Calculating Quartiles for Ungrouped Data
By the end of the lesson, the learner should be able to:

-Find lower quartile, median, upper quartile for raw data
-Apply the position formulas correctly
-Arrange data in ascending order systematically
-Interpret quartile values in context

-Practice with test scores from the class
-Arrange data systematically on chalkboard
-Calculate Q1, Q2, Q3 step by step
-Students work with their own datasets
Exercise books
-Manila paper
-Test score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 5
Statistics II
Quartiles for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate quartiles using interpolation formula
-Identify quartile classes correctly
-Apply the formula: Q = L + [(n/4 - CF)/f] × h
-Solve problems with continuous grouped data

-Work through detailed examples on chalkboard
-Practice identifying quartile positions
-Use cumulative frequency systematically
-Apply to real examination grade data
Exercise books
-Manila paper
-Grade data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 6
Statistics II
Deciles and Percentiles Calculations
By the end of the lesson, the learner should be able to:

-Calculate specific deciles and percentiles
-Apply interpolation formulas for deciles/percentiles
-Interpret decile and percentile positions
-Use these measures for comparative analysis

-Calculate specific percentiles for class test scores
-Find deciles for sports performance data
-Compare students' positions using percentiles
-Practice with national examination statistics
Exercise books
-Manila paper
-Performance data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 49-52
3 7
Statistics II
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives)
By the end of the lesson, the learner should be able to:

-Construct cumulative frequency tables
-Understand "less than" cumulative frequencies
-Plot cumulative frequency against class boundaries
-Identify the characteristic S-shape of ogives

-Create cumulative frequency table with class data
-Plot points on manila paper grid
-Join points to form smooth curve
-Discuss properties of ogive curves
Exercise books
-Manila paper
-Ruler
-Class data
-Pencils
KLB Secondary Mathematics Form 4, Pages 52-60
4

OPENER EXAMINATIONS

5 1
Statistics II
Reading Values from Ogives
By the end of the lesson, the learner should be able to:

-Read median from cumulative frequency curve
-Find quartiles using ogive
-Estimate any percentile from the curve
-Interpret readings in real-world context

-Demonstrate reading techniques on large ogive
-Practice finding median position (n/2)
-Read quartile positions systematically
-Students practice reading their own curves
Exercise books
-Manila paper
-Completed ogives
-Ruler
KLB Secondary Mathematics Form 4, Pages 52-60
5 2
Statistics II
Applications of Ogives
By the end of the lesson, the learner should be able to:

-Use ogives to solve real-world problems
-Find number of values above/below certain points
-Calculate percentage of data in given ranges
-Compare different datasets using ogives

-Solve problems about pass rates in examinations
-Find how many students scored above average
-Calculate percentages for different grade ranges
-Use agricultural production data for analysis
Exercise books
-Manila paper
-Real problem datasets
-Ruler
KLB Secondary Mathematics Form 4, Pages 52-60
5 3
Statistics II
Introduction to Measures of Dispersion
By the end of the lesson, the learner should be able to:

-Define dispersion and its importance
-Understand limitations of central tendency alone
-Compare datasets with same mean but different spread
-Identify different measures of dispersion

-Compare test scores of two classes with same mean
-Show how different spreads affect interpretation
-Discuss variability in real-world data
-Introduce range as simplest measure
Exercise books
-Manila paper
-Comparative datasets
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 60-65
5 4
Statistics II
Range and Interquartile Range
By the end of the lesson, the learner should be able to:

-Calculate range for different datasets
-Find interquartile range (Q3 - Q1)
-Calculate quartile deviation (semi-interquartile range)
-Compare advantages and limitations of each measure

-Calculate range for student heights in class
-Find IQR for the same data
-Discuss effect of outliers on range
-Compare IQR stability with range
Exercise books
-Manila paper
-Student data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 60-65
5 5
Statistics II
Mean Absolute Deviation
By the end of the lesson, the learner should be able to:

-Calculate mean absolute deviation
-Use absolute values correctly in calculations
-Understand concept of average distance from mean
-Apply MAD to compare variability in datasets

-Calculate MAD for class test scores
-Practice with absolute value calculations
-Compare MAD values for different subjects
-Interpret MAD in context of data spread
Exercise books
-Manila paper
-Test score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
5 6
Statistics II
Introduction to Variance
Variance Using Alternative Formula
By the end of the lesson, the learner should be able to:

-Define variance as mean of squared deviations
-Calculate variance using definition formula
-Understand why deviations are squared
-Compare variance with other dispersion measures

-Work through variance calculation step by step
-Explain squaring deviations eliminates negatives
-Calculate variance for simple datasets
-Compare with mean absolute deviation
Exercise books
-Manila paper
-Simple datasets
-Chalk/markers
-Frequency data
KLB Secondary Mathematics Form 4, Pages 65-70
5 7
Statistics II
Standard Deviation Calculations
By the end of the lesson, the learner should be able to:

-Calculate standard deviation as square root of variance
-Apply standard deviation to ungrouped data
-Use standard deviation to compare datasets
-Interpret standard deviation in practical contexts

-Calculate SD for student exam scores
-Compare SD values for different subjects
-Interpret what high/low SD means
-Use SD to identify consistent performance
Exercise books
-Manila paper
-Exam score data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
6 1
Statistics II
Standard Deviation for Grouped Data
By the end of the lesson, the learner should be able to:

-Calculate standard deviation for frequency distributions
-Use working mean with grouped data for SD
-Apply coding techniques to simplify calculations
-Solve complex grouped data problems

-Work with agricultural yield data from local farms
-Use coding method to simplify calculations
-Calculate SD step by step for grouped data
-Compare variability in different crops
Exercise books
-Manila paper
-Agricultural data
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 65-70
6 2
Statistics II
Matrices
Advanced Standard Deviation Techniques
Introduction and real-life applications
By the end of the lesson, the learner should be able to:

-Apply transformation properties of standard deviation
-Use coding with class width division
-Solve problems with multiple transformations
-Verify results using different methods

-Demonstrate coding transformations
-Show how SD changes with data transformations
-Practice reverse calculations
-Verify using alternative methods
Exercise books
-Manila paper
-Transformation examples
-Chalk/markers
Old newspapers with league tables, chalk and blackboard, exercise books
KLB Secondary Mathematics Form 4, Pages 65-70
6 3
Matrices
Order of a matrix and elements
Square matrices, row and column matrices
By the end of the lesson, the learner should be able to:
Determine the order of given matrices
Identify matrix elements by position
Use correct notation for matrix elements
Distinguish between different matrix types
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating
Solving element location using coordinate games
Demonstrations using drawn grids on blackboard
Explaining position notation using class register
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
KLB Mathematics Book Three Pg 169-170
6 4
Matrices
Addition of matrices
Subtraction of matrices
By the end of the lesson, the learner should be able to:
Add matrices of the same order
Apply matrix addition rules correctly
Understand compatibility for addition
Solve matrix addition problems systematically
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters
Solving basic addition using blackboard work
Demonstrations using physical counting objects
Explaining compatibility using size comparisons
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
KLB Mathematics Book Three Pg 170-171
6 5
Matrices
Combined addition and subtraction
Scalar multiplication
By the end of the lesson, the learner should be able to:
Perform multiple matrix operations
Apply order of operations in matrix calculations
Solve complex combined problems
Demonstrate systematic problem-solving
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach
Solving multi-step problems using organized methods
Demonstrations using systematic blackboard work
Explaining operation sequencing using flowcharts
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books
KLB Mathematics Book Three Pg 171-174
6 6
Matrices
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices)
By the end of the lesson, the learner should be able to:
Understand matrix multiplication prerequisites
Learn compatibility requirements for multiplication
Apply row-by-column multiplication method
Calculate simple matrix products
Q/A on multiplication compatibility using dimensions
Discussions on row-column method using finger tracing
Solving basic multiplication using dot product method
Demonstrations using physical row-column matching
Explaining order requirements using practical examples
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates
KLB Mathematics Book Three Pg 174-176
6 7
Matrices
Matrix multiplication (larger matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices of various orders
Apply multiplication to 3×3 and larger matrices
Determine when multiplication is possible
Calculate products efficiently
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts
Solving advanced problems using systematic methods
Demonstrations using organized calculation procedures
Explaining general principles using examples
Chalk and blackboard, large sheets of paper for working, exercise books
KLB Mathematics Book Three Pg 176-179
7 1
Matrices
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Understand non-commutativity of matrix multiplication
Apply associative and distributive properties
Distinguish between pre and post multiplication
Solve problems involving multiplication properties
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples
Solving property-based problems using verification
Demonstrations using concrete examples
Explaining distributive law using expansion
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 174-179
7 2
Matrices
Real-world matrix multiplication applications
Identity matrix
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 176-179
7 3
Matrices
Determinant of 2×2 matrices
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
KLB Mathematics Book Three Pg 183
7 4
Matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Understand the concept of matrix inverse
Identify conditions for matrix invertibility
Apply the inverse formula for 2×2 matrices
Understand singular matrices
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions
Solving basic inverse problems using formula
Demonstrations using step-by-step method
Explaining singular matrices using zero determinant
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183-185
7 5
Matrices
Inverse of 2×2 matrices - practice
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
KLB Mathematics Book Three Pg 185-187
7 6
Matrices
Introduction to solving simultaneous equations
By the end of the lesson, the learner should be able to:
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, equation examples from previous topics
KLB Mathematics Book Three Pg 188-189
7 7
Matrices
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Solve 2×2 simultaneous equations using matrix methods
Apply inverse matrix techniques
Verify solutions by substitution
Compare matrix method with other techniques
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution
Solving 2×2 systems using complete method
Demonstrations using organized solution process
Explaining method advantages using comparisons
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-190
8

MIDTERM EXAMINATIONS AND BREAK

9 1
Matrices
Advanced simultaneous equation problems
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 188-190
9 2
Matrices
Transpose of matrices
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 170-174
9 3
Matrices
Matrix equation solving
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
KLB Mathematics Book Three Pg 183-190
9 4
Vectors (II)
Coordinates in two dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
KLB Mathematics Book Three Pg 221-222
9 5
Vectors (II)
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 222
9 6
Vectors (II)
Column and position vectors in three dimensions
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
KLB Mathematics Book Three Pg 223-224
9 7
Vectors (II)
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Calculate the position vector
Apply position vectors to geometric problems
Find distances using position vector methods
Solve positioning problems systematically
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods
Solving position vector problems using systematic calculation
Demonstrations using fixed origin and variable endpoints
Explaining position concepts using practical location examples
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 224
10 1
Vectors (II)
Vector operations using unit vectors
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
KLB Mathematics Book Three Pg 226-228
10 2
Vectors (II)
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Apply the 3D magnitude formula systematically
Find vector lengths in spatial contexts
Solve magnitude problems accurately
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques
Solving 3D magnitude problems using systematic calculation
Demonstrations using 3D distance examples
Explaining 3D magnitude using practical spatial examples
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 229-230
10 3
Vectors (II)
Magnitude applications and unit vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
KLB Mathematics Book Three Pg 229-230
10 4
Vectors (II)
Parallel vectors
By the end of the lesson, the learner should be able to:
Identify parallel vectors
Determine when vectors are parallel
Apply parallel vector properties
Use scalar multiples in parallel relationships
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples
Solving parallel vector problems using systematic testing
Demonstrations using parallel line and direction examples
Explaining parallel concepts using geometric reasoning
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 231-232
10 5
Vectors (II)
Collinearity
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
KLB Mathematics Book Three Pg 232-234
10 6
Vectors (II)
Advanced collinearity applications
Proportional division of a line
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply collinearity to complex geometric problems
Integrate parallel and collinearity concepts
Solve advanced alignment problems
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods
Solving challenging collinearity problems
Demonstrations using complex geometric constructions
Explaining advanced applications using comprehensive examples
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books
KLB Mathematics Book Three Pg 232-234
10 7
Vectors (II)
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line externally in the given ratio
Apply the external division formula
Distinguish between internal and external division
Solve external division problems accurately
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods
Solving external division problems using careful approaches
Demonstrations using external point construction examples
Explaining external division using extended line concepts
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 238-239
11 1
Vectors (II)
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 239
11 2
Vectors (II)
Ratio theorem
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 240-242
11 3
Vectors (II)
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 242
11 4
Vectors (II)
Mid-point
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 243
11 5
Vectors (II)
Ratio theorem and midpoint integration
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 244-245
11 6
Vectors (II)
Applications of vectors in geometry
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
KLB Mathematics Book Three Pg 248-249
11 7
Vectors (II)
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a rectangle
Apply vector methods to rectangle properties
Prove rectangle theorems using vectors
Compare parallelogram and rectangle diagonal properties
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods
Solving rectangle problems using systematic approaches
Demonstrations using rectangle constructions and vector proofs
Explaining rectangle properties using vector reasoning
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-250
12

ENDTERM EXAMINATIONS

13

MARKING AND CLOSING SCHOOL

14 1
Vectors (II)
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250

Your Name Comes Here


Download

Feedback