Home






SCHEME OF WORK
Mathematics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

SCHOOL OPENING

1 4-5
Statistics II
Introduction to Advanced Statistics
Working Mean Concept
Mean Using Working Mean - Simple Data
By the end of the lesson, the learner should be able to:

-Review measures of central tendency from Form 2
-Identify limitations of simple mean calculations
-Understand need for advanced statistical methods
-Recognize patterns in large datasets

-Define working mean (assumed mean)
-Explain why working mean simplifies calculations
-Identify appropriate working mean values
-Apply working mean to reduce calculation errors

-Review mean, median, mode from previous work
-Discuss challenges with large numbers
-Examine real data from Kenya (population, rainfall)
-Q&A on statistical applications in daily life

-Demonstrate calculation difficulties with large numbers
-Show how working mean simplifies arithmetic
-Practice selecting suitable working means
-Compare results with and without working mean
Exercise books
-Manila paper
-Real data examples
-Chalk/markers
Exercise books
-Manila paper
-Sample datasets
-Chalk/markers
-Student data
KLB Secondary Mathematics Form 4, Pages 39-42
1 6
Statistics II
Mean Using Working Mean - Frequency Tables
Mean for Grouped Data Using Working Mean
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for frequency data
-Apply working mean to discrete frequency distributions
-Use the formula with frequencies correctly
-Solve real-world problems with frequency data

-Demonstrate with family size data from local community
-Practice calculating fx and fd systematically
-Work through examples step-by-step
-Students practice with their own collected data
Exercise books
-Manila paper
-Community data
-Chalk/markers
-Real datasets
KLB Secondary Mathematics Form 4, Pages 42-48
1 7
Statistics II
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles
By the end of the lesson, the learner should be able to:

-Apply coding techniques with working mean
-Divide by class width to simplify further
-Use transformation methods efficiently
-Solve complex grouped data problems

-Demonstrate coding method on chalkboard
-Show how dividing by class width helps
-Practice reverse calculations to get original mean
-Work with economic data from Kenya
Exercise books
-Manila paper
-Economic data
-Chalk/markers
-Student height data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 42-48
2 1
Statistics II
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data
By the end of the lesson, the learner should be able to:

-Find lower quartile, median, upper quartile for raw data
-Apply the position formulas correctly
-Arrange data in ascending order systematically
-Interpret quartile values in context

-Practice with test scores from the class
-Arrange data systematically on chalkboard
-Calculate Q1, Q2, Q3 step by step
-Students work with their own datasets
Exercise books
-Manila paper
-Test score data
-Chalk/markers
-Grade data
KLB Secondary Mathematics Form 4, Pages 49-52
2 2
Statistics II
Deciles and Percentiles Calculations
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives)
By the end of the lesson, the learner should be able to:

-Calculate specific deciles and percentiles
-Apply interpolation formulas for deciles/percentiles
-Interpret decile and percentile positions
-Use these measures for comparative analysis

-Calculate specific percentiles for class test scores
-Find deciles for sports performance data
-Compare students' positions using percentiles
-Practice with national examination statistics
Exercise books
-Manila paper
-Performance data
-Chalk/markers
-Ruler
-Class data
-Pencils
KLB Secondary Mathematics Form 4, Pages 49-52
2 3
Statistics II
Reading Values from Ogives
Applications of Ogives
By the end of the lesson, the learner should be able to:

-Read median from cumulative frequency curve
-Find quartiles using ogive
-Estimate any percentile from the curve
-Interpret readings in real-world context

-Demonstrate reading techniques on large ogive
-Practice finding median position (n/2)
-Read quartile positions systematically
-Students practice reading their own curves
Exercise books
-Manila paper
-Completed ogives
-Ruler
-Real problem datasets
KLB Secondary Mathematics Form 4, Pages 52-60
2-3

OPENER EXAMINATION

4 1
Statistics II
Introduction to Measures of Dispersion
Range and Interquartile Range
By the end of the lesson, the learner should be able to:

-Define dispersion and its importance
-Understand limitations of central tendency alone
-Compare datasets with same mean but different spread
-Identify different measures of dispersion

-Compare test scores of two classes with same mean
-Show how different spreads affect interpretation
-Discuss variability in real-world data
-Introduce range as simplest measure
Exercise books
-Manila paper
-Comparative datasets
-Chalk/markers
-Student data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 60-65
4 2
Statistics II
Mean Absolute Deviation
Introduction to Variance
By the end of the lesson, the learner should be able to:

-Calculate mean absolute deviation
-Use absolute values correctly in calculations
-Understand concept of average distance from mean
-Apply MAD to compare variability in datasets

-Calculate MAD for class test scores
-Practice with absolute value calculations
-Compare MAD values for different subjects
-Interpret MAD in context of data spread
Exercise books
-Manila paper
-Test score data
-Chalk/markers
-Simple datasets
KLB Secondary Mathematics Form 4, Pages 65-70
4 3
Statistics II
Variance Using Alternative Formula
Standard Deviation Calculations
By the end of the lesson, the learner should be able to:

-Apply the formula: σ² = (Σx²/n) - x̄²
-Use alternative variance formula efficiently
-Compare computational methods
-Solve variance problems for frequency data

-Demonstrate both variance formulas
-Show computational advantages of alternative formula
-Practice with frequency tables
-Students choose efficient method
Exercise books
-Manila paper
-Frequency data
-Chalk/markers
-Exam score data
KLB Secondary Mathematics Form 4, Pages 65-70
4 4-5
Statistics II
Loci
Standard Deviation for Grouped Data
Advanced Standard Deviation Techniques
Introduction to Loci
Basic Locus Concepts and Laws
Perpendicular Bisector Locus
By the end of the lesson, the learner should be able to:

-Calculate standard deviation for frequency distributions
-Use working mean with grouped data for SD
-Apply coding techniques to simplify calculations
-Solve complex grouped data problems

-Understand that loci follow specific laws or conditions
-Identify the laws governing different types of movement
-Distinguish between 2D and 3D loci
-Apply locus concepts to simple problems

-Work with agricultural yield data from local farms
-Use coding method to simplify calculations
-Calculate SD step by step for grouped data
-Compare variability in different crops

-Physical demonstrations with moving objects
-Students track movement of classroom door
-Identify laws governing pendulum movement
-Practice stating locus laws clearly
Exercise books
-Manila paper
-Agricultural data
-Chalk/markers
-Transformation examples
-String
Exercise books
-Manila paper
-String
-Real objects
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 65-70
KLB Secondary Mathematics Form 4, Pages 73-75
4 6
Loci
Properties and Applications of Perpendicular Bisector
Locus of Points at Fixed Distance from a Point
By the end of the lesson, the learner should be able to:

-Understand perpendicular bisector in 3D space
-Apply perpendicular bisector to find circumcenters
-Solve practical problems using perpendicular bisector
-Use perpendicular bisector in triangle constructions

-Find circumcenter of triangle using perpendicular bisectors
-Solve water pipe problems (equidistant from two points)
-Apply to real-world location problems
-Practice with various triangle types
Exercise books
-Manila paper
-Compass
-Ruler
-String
KLB Secondary Mathematics Form 4, Pages 75-82
4 7
Loci
Locus of Points at Fixed Distance from a Line
Angle Bisector Locus
By the end of the lesson, the learner should be able to:

-Define locus of points at fixed distance from straight line
-Construct parallel lines at given distances
-Understand cylindrical surface in 3D
-Apply to practical problems like road margins

-Construct parallel lines using ruler and set square
-Mark points at equal distances from given line
-Discuss road design, river banks, field boundaries
-Practice with various distances and orientations
Exercise books
-Manila paper
-Ruler
-Set square
-Compass
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
5 1
Loci
Properties and Applications of Angle Bisector
Constant Angle Locus
By the end of the lesson, the learner should be able to:

-Understand relationship between angle bisectors in triangles
-Apply angle bisector theorem
-Solve problems involving inscribed circles
-Use angle bisectors in geometric constructions

-Construct inscribed circle using angle bisectors
-Apply angle bisector theorem to solve problems
-Find external angle bisectors
-Solve practical surveying problems
Exercise books
-Manila paper
-Compass
-Ruler
-Protractor
KLB Secondary Mathematics Form 4, Pages 75-82
5 2
Loci
Advanced Constant Angle Constructions
Introduction to Intersecting Loci
Intersecting Circles and Lines
By the end of the lesson, the learner should be able to:

-Construct constant angle loci for various angles
-Find centers of constant angle arcs
-Solve complex constant angle problems
-Apply to geometric theorem proving

-Find centers for 60°, 90°, 120° angle loci
-Construct major and minor arcs
-Solve problems involving multiple angle constraints
-Verify constructions using measurement
Exercise books
-Manila paper
-Compass
-Protractor
-Ruler
KLB Secondary Mathematics Form 4, Pages 75-82
5 3
Loci
Triangle Centers Using Intersecting Loci
Complex Intersecting Loci Problems
By the end of the lesson, the learner should be able to:

-Find circumcenter using perpendicular bisector intersections
-Locate incenter using angle bisector intersections
-Determine centroid and orthocenter
-Apply triangle centers to solve problems

-Construct all four triangle centers
-Compare properties of different triangle centers
-Use triangle centers in geometric proofs
-Solve problems involving triangle center properties
Exercise books
-Manila paper
-Compass
-Ruler
-Real-world scenarios
KLB Secondary Mathematics Form 4, Pages 83-89
5 4-5
Loci
Introduction to Loci of Inequalities
Distance Inequality Loci
Combined Inequality Loci
Advanced Inequality Applications
By the end of the lesson, the learner should be able to:

-Understand graphical representation of inequalities
-Identify regions satisfying inequality conditions
-Distinguish between boundary lines and regions
-Apply inequality loci to practical constraints

-Solve problems with multiple inequality constraints
-Find intersection regions of inequality loci
-Apply to optimization and feasibility problems
-Use systematic shading techniques

-Shade regions representing simple inequalities
-Use broken and solid lines appropriately
-Practice with distance inequalities
-Apply to real-world constraint problems

-Find feasible regions for multiple constraints
-Solve planning problems with restrictions
-Apply to resource allocation scenarios
-Practice systematic region identification
Exercise books
-Manila paper
-Ruler
-Colored pencils
-Compass
Exercise books
-Manila paper
-Ruler
-Colored pencils
-Real problem data
KLB Secondary Mathematics Form 4, Pages 89-92
5 6
Loci
Introduction to Loci Involving Chords
Chord-Based Constructions
By the end of the lesson, the learner should be able to:

-Review chord properties in circles
-Understand perpendicular bisector of chords
-Apply chord theorems to loci problems
-Construct equal chords in circles

-Review chord bisector theorem
-Construct chords of given lengths
-Find centers using chord properties
-Practice with chord intersection theorems
Exercise books
-Manila paper
-Compass
-Ruler
KLB Secondary Mathematics Form 4, Pages 92-94
5 7
Loci
Trigonometry III
Advanced Chord Problems
Integration of All Loci Types
Review of Basic Trigonometric Ratios
By the end of the lesson, the learner should be able to:

-Solve complex problems involving multiple chords
-Apply power of point theorem
-Find loci related to chord properties
-Use chords in circle geometry proofs

-Apply intersecting chords theorem
-Solve problems with chord-secant relationships
-Find loci of points with equal power
-Practice with tangent-chord angles
Exercise books
-Manila paper
-Compass
-Ruler
-Rulers
-Calculators (if available)
KLB Secondary Mathematics Form 4, Pages 92-94
6 1
Trigonometry III
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1
By the end of the lesson, the learner should be able to:

-Understand the derivation of fundamental identity
-Apply Pythagoras theorem to unit circle
-Use the identity to solve trigonometric equations
-Convert between sin, cos using the identity

-Demonstrate using right-angled triangle with hypotenuse 1
-Show algebraic derivation step by step
-Practice substituting values to verify identity
-Solve equations using the fundamental identity
Exercise books
-Manila paper
-Unit circle diagrams
-Calculators
-Trigonometric tables
-Real-world examples
KLB Secondary Mathematics Form 4, Pages 99-103
6 2
Trigonometry III
Additional Trigonometric Identities
Introduction to Waves
By the end of the lesson, the learner should be able to:

-Derive and apply tan θ = sin θ/cos θ
-Use reciprocal ratios (sec, cosec, cot)
-Apply multiple identities in problem solving
-Verify trigonometric identities algebraically

-Demonstrate relationship between tan, sin, cos
-Introduce reciprocal ratios with examples
-Practice identity verification techniques
-Solve composite identity problems
Exercise books
-Manila paper
-Identity reference sheet
-Calculators
-String/rope
-Wave diagrams
KLB Secondary Mathematics Form 4, Pages 99-103
6 3
Trigonometry III
Sine and Cosine Waves
Transformations of Sine Waves
By the end of the lesson, the learner should be able to:

-Plot graphs of y = sin x and y = cos x
-Identify amplitude and period of basic functions
-Compare sine and cosine wave patterns
-Read values from trigonometric graphs

-Plot sin x and cos x on same axes using manila paper
-Mark key points (0°, 90°, 180°, 270°, 360°)
-Measure and compare wave characteristics
-Practice reading values from completed graphs
Exercise books
-Manila paper
-Rulers
-Graph paper (if available)
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 103-109
6 4-5
Trigonometry III
Period Changes in Trigonometric Functions
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts
General Trigonometric Functions
Cosine Wave Transformations
By the end of the lesson, the learner should be able to:

-Understand effect of coefficient on period
-Plot graphs of y = sin(bx) for different values of b
-Calculate periods of transformed functions
-Apply period changes to cyclical phenomena

-Understand concept of phase angle
-Plot graphs of y = sin(x + θ) functions
-Identify horizontal shifts in wave patterns
-Apply phase differences to wave analysis

-Plot y = sin(2x), y = sin(x/2) on manila paper
-Compare periods with y = sin x
-Calculate period using formula 360°/b
-Apply to frequency and musical pitch examples

-Plot y = sin(x + 45°), y = sin(x - 30°)
-Demonstrate horizontal shifting of waves
-Compare leading and lagging waves
-Apply to electrical circuits or sound waves
Exercise books
-Manila paper
-Rulers
-Period calculation charts
-Transformation examples
Exercise books
-Manila paper
-Colored pencils
-Phase shift examples
-Rulers
-Complex function examples
-Temperature data
KLB Secondary Mathematics Form 4, Pages 103-109
6 6
Trigonometry III
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Understand concept of trigonometric equations
-Identify that trig equations have multiple solutions
-Solve simple equations like sin x = 0.5
-Find all solutions in given ranges

-Demonstrate using unit circle or graphs
-Show why sin x = 0.5 has multiple solutions
-Practice finding principal values
-Use graphs to identify all solutions in range
Exercise books
-Manila paper
-Unit circle diagrams
-Trigonometric tables
-Calculators
-Solution worksheets
KLB Secondary Mathematics Form 4, Pages 109-112
6 7
Trigonometry III
Quadratic Trigonometric Equations
Equations Involving Multiple Angles
By the end of the lesson, the learner should be able to:

-Solve equations like sin²x - sin x = 0
-Apply factoring techniques to trigonometric equations
-Use substitution methods for complex equations
-Find all solutions systematically

-Demonstrate substitution method (let y = sin x)
-Factor quadratic expressions in trigonometry
-Solve resulting quadratic equations
-Back-substitute to find angle solutions
Exercise books
-Manila paper
-Factoring techniques
-Substitution examples
-Multiple angle examples
-Real applications
KLB Secondary Mathematics Form 4, Pages 109-112
7 1
Trigonometry III
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities
By the end of the lesson, the learner should be able to:

-Solve equations graphically using intersections
-Plot trigonometric functions on same axes
-Find intersection points as equation solutions
-Verify algebraic solutions graphically

-Plot y = sin x and y = 0.5 on same axes
-Identify intersection points as solutions
-Use graphical method for complex equations
-Compare graphical and algebraic solutions
Exercise books
-Manila paper
-Rulers
-Graphing examples
-Identity reference sheets
-Complex examples
KLB Secondary Mathematics Form 4, Pages 109-112
7 2
Three Dimensional Geometry
Introduction to 3D Concepts
Properties of Common Solids
By the end of the lesson, the learner should be able to:

-Distinguish between 1D, 2D, and 3D objects
-Identify vertices, edges, and faces of 3D solids
-Understand concepts of points, lines, and planes in space
-Recognize real-world 3D objects and their properties

-Use classroom objects to demonstrate dimensions
-Count vertices, edges, faces of cardboard models
-Identify 3D shapes in school environment
-Discuss difference between area and volume
Exercise books
-Cardboard boxes
-Manila paper
-Real 3D objects
-Cardboard
-Scissors
-Tape/glue
KLB Secondary Mathematics Form 4, Pages 113-115
7 3
Three Dimensional Geometry
Understanding Planes in 3D Space
Lines in 3D Space
Introduction to Projections
By the end of the lesson, the learner should be able to:

-Define planes and their properties in 3D
-Identify parallel and intersecting planes
-Understand that planes extend infinitely
-Recognize planes formed by faces of solids

-Use books/boards to represent planes
-Demonstrate parallel planes using multiple books
-Show intersecting planes using book corners
-Identify planes in classroom architecture
Exercise books
-Manila paper
-Books/boards
-Classroom examples
-Rulers/sticks
-3D models
-Light source
KLB Secondary Mathematics Form 4, Pages 113-115
7 4-5
Three Dimensional Geometry
Angle Between Line and Plane - Concept
Calculating Angles Between Lines and Planes
Advanced Line-Plane Angle Problems
Introduction to Plane-Plane Angles
By the end of the lesson, the learner should be able to:

-Define angle between line and plane
-Understand that angle is measured with projection
-Identify the projection of line on plane
-Recognize when line is perpendicular to plane

-Solve complex angle problems systematically
-Apply coordinate geometry methods where helpful
-Use multiple right-angled triangles in solutions
-Verify answers using different approaches

-Demonstrate using stick against book (plane)
-Show that angle is with projection, not plane itself
-Use protractor to measure angles with projections
-Identify perpendicular lines to planes

-Practice with tent and roof angle problems
-Solve ladder against wall problems in 3D
-Work through architectural angle calculations
-Use real-world engineering applications
Exercise books
-Manila paper
-Protractor
-Rulers/sticks
-Calculators
-3D problem diagrams
Exercise books
-Manila paper
-Real scenarios
-Problem sets
-Books
-Folded paper
KLB Secondary Mathematics Form 4, Pages 115-123
7 6
Three Dimensional Geometry
Finding Angles Between Planes
Complex Plane-Plane Angle Problems
By the end of the lesson, the learner should be able to:

-Construct perpendiculars to find plane angles
-Apply trigonometry to calculate dihedral angles
-Use right-angled triangles in plane intersection
-Solve angle problems in prisms and pyramids

-Work through construction method step-by-step
-Practice finding intersection lines first
-Calculate angles in triangular prisms
-Apply to roof and building angle problems
Exercise books
-Manila paper
-Protractor
-Building examples
-Complex 3D models
-Architecture examples
KLB Secondary Mathematics Form 4, Pages 123-128
7 7
Three Dimensional Geometry
Practical Applications of Plane Angles
Understanding Skew Lines
By the end of the lesson, the learner should be able to:

-Apply plane angles to real-world problems
-Solve engineering and construction problems
-Calculate angles in roof structures
-Use in navigation and surveying contexts

-Calculate roof pitch angles
-Solve bridge construction angle problems
-Apply to mining and tunnel excavation
-Use in aerial navigation problems
Exercise books
-Manila paper
-Real engineering data
-Construction examples
-Rulers
-Building frameworks
KLB Secondary Mathematics Form 4, Pages 123-128
8 1
Three Dimensional Geometry
Angle Between Skew Lines
Advanced Skew Line Problems
Distance Calculations in 3D
By the end of the lesson, the learner should be able to:

-Understand how to find angle between skew lines
-Apply translation method for skew line angles
-Use parallel line properties in 3D
-Calculate angles by creating intersecting lines

-Demonstrate translation method using rulers
-Translate one line to intersect the other
-Practice with cuboid edge problems
-Apply to framework and structure problems
Exercise books
-Manila paper
-Rulers
-Translation examples
-Engineering examples
-Structure diagrams
-Distance calculation charts
-3D coordinate examples
KLB Secondary Mathematics Form 4, Pages 128-135
8 2
Three Dimensional Geometry
Volume and Surface Area Applications
Coordinate Geometry in 3D
By the end of the lesson, the learner should be able to:

-Connect 3D geometry to volume calculations
-Apply angle calculations to surface area problems
-Use 3D relationships in optimization
-Solve practical volume and area problems

-Calculate slant heights using 3D angles
-Find surface areas of pyramids using angles
-Apply to packaging and container problems
-Use in architectural space planning
Exercise books
-Manila paper
-Volume formulas
-Real containers
-3D coordinate grid
-Room corner reference
KLB Secondary Mathematics Form 4, Pages 115-135
8 3
Three Dimensional Geometry
Longitudes and Latitudes
Integration with Trigonometry
Introduction to Earth as a Sphere
By the end of the lesson, the learner should be able to:

-Apply trigonometry extensively to 3D problems
-Use multiple trigonometric ratios in solutions
-Combine trigonometry with 3D geometric reasoning
-Solve complex problems requiring trig and geometry

-Work through problems requiring sin, cos, tan
-Use trigonometric identities in 3D contexts
-Practice angle calculations in pyramids
-Apply to navigation and astronomy problems
Exercise books
-Manila paper
-Trigonometric tables
-Astronomy examples
-Globe/spherical ball
-Chalk/markers
KLB Secondary Mathematics Form 4, Pages 115-135
8 4-5
Longitudes and Latitudes
Great and Small Circles
Understanding Latitude
Properties of Latitude Lines
Understanding Longitude
By the end of the lesson, the learner should be able to:

-Define great circles and small circles on a sphere
-Identify properties of great and small circles
-Understand that great circles divide sphere into hemispheres
-Recognize examples of great and small circles on Earth

-Understand that latitude lines are parallel circles
-Recognize that latitude lines are small circles (except equator)
-Calculate radii of latitude circles using trigonometry
-Apply formula r = R cos θ for latitude circle radius

-Demonstrate great circles using globe and string
-Show that great circles pass through center
-Compare radii of great and small circles
-Identify equator as the largest circle

-Demonstrate parallel nature of latitude lines
-Calculate radius of latitude circle at 60°N
-Show relationship between latitude and circle size
-Use trigonometry to find circle radii
Exercise books
-Globe
-String
-Manila paper
-Tape/string
-Protractor
Exercise books
-Globe
-Calculator
-Manila paper
-String
-World map
KLB Secondary Mathematics Form 4, Pages 136-139
8 6
Longitudes and Latitudes
Properties of Longitude Lines
Position of Places on Earth
Latitude and Longitude Differences
By the end of the lesson, the learner should be able to:

-Understand that longitude lines are great circles
-Recognize that all longitude lines pass through poles
-Understand that longitude lines converge at poles
-Identify that opposite longitudes differ by 180°

-Show longitude lines converging at poles
-Demonstrate that longitude lines are great circles
-Find opposite longitude positions
-Compare longitude and latitude line properties
Exercise books
-Globe
-String
-Manila paper
-World map
-Kenya map
-Calculator
-Navigation examples
KLB Secondary Mathematics Form 4, Pages 136-139
8 7
Longitudes and Latitudes
Introduction to Distance Calculations
Distance Along Great Circles
By the end of the lesson, the learner should be able to:

-Understand relationship between angles and distances
-Learn that 1° on great circle = 60 nautical miles
-Define nautical mile and its relationship to kilometers
-Apply basic distance formulas for great circles

-Demonstrate angle-distance relationship using globe
-Show that 1' (minute) = 1 nautical mile
-Convert between nautical miles and kilometers
-Practice basic distance calculations
Exercise books
-Globe
-Calculator
-Conversion charts
-Manila paper
-Real examples
KLB Secondary Mathematics Form 4, Pages 143-156
9 1
Longitudes and Latitudes
Distance Along Small Circles (Parallels)
Shortest Distance Problems
By the end of the lesson, the learner should be able to:

-Understand that parallel distances use different formula
-Apply formula: distance = longitude difference × 60 × cos(latitude)
-Calculate radius of latitude circles
-Solve problems involving parallel of latitude distances

-Derive formula using trigonometry
-Calculate distance between Mombasa and Lagos
-Show why latitude affects distance calculations
-Practice with various latitude examples
Exercise books
-Manila paper
-Calculator
-African city examples
-Flight path examples
KLB Secondary Mathematics Form 4, Pages 143-156
9 2
Longitudes and Latitudes
Advanced Distance Calculations
Introduction to Time and Longitude
By the end of the lesson, the learner should be able to:

-Solve complex distance problems with multiple steps
-Calculate distances involving multiple coordinate differences
-Apply to surveying and mapping problems
-Use systematic approaches for difficult calculations

-Work through complex multi-step distance problems
-Apply to surveying land boundaries
-Calculate perimeters of geographical regions
-Practice with examination-style problems
Exercise books
-Manila paper
-Calculator
-Surveying examples
-Globe
-Light source
-Time zone examples
KLB Secondary Mathematics Form 4, Pages 143-156
9 3
Longitudes and Latitudes
Local Time Calculations
Greenwich Mean Time (GMT)
By the end of the lesson, the learner should be able to:

-Calculate local time differences between places
-Understand that places east are ahead in time
-Apply rule: 4 minutes per degree of longitude
-Solve time problems involving East-West positions

-Calculate time difference between Nairobi and London
-Practice with cities at various longitudes
-Apply East-ahead, West-behind rule consistently
-Work through systematic time calculation method
Exercise books
-Manila paper
-World time examples
-Calculator
-World map
-Time zone charts
KLB Secondary Mathematics Form 4, Pages 156-161
9 4
Longitudes and Latitudes
Complex Time Problems
Speed Calculations
By the end of the lesson, the learner should be able to:

-Solve time problems involving date changes
-Handle calculations crossing International Date Line
-Apply to travel and communication scenarios
-Calculate arrival times for international flights

-Work through International Date Line problems
-Calculate flight arrival times across time zones
-Apply to international communication timing
-Practice with business meeting scheduling
Exercise books
-Manila paper
-International examples
-Travel scenarios
-Calculator
-Navigation examples
KLB Secondary Mathematics Form 4, Pages 156-161
10-11

END TEARM EXAMINATION

12

SCHOOL CLOSING


Your Name Comes Here


Download

Feedback